SinusoidalPattern::unwrapPhaseMap now takes an InputArray instead of InputArrayOfArrays to correct a Python binding problem present a scriptable HistogramPhaseUnwrapping::create replicate C++ structured_light test in Python PhaseUnwrapping now init unwrappedPhase so pixel outside the mask area are set to 0 python binding for HistogramPhaseUnwrapping::Params to use HistogramPhaseUnwrapping::createpull/2452/head
parent
9c0ae273fd
commit
e967557e17
5 changed files with 109 additions and 8 deletions
@ -0,0 +1,3 @@ |
||||
#ifdef HAVE_OPENCV_PHASE_UNWRAPPING |
||||
typedef cv::phase_unwrapping::HistogramPhaseUnwrapping::Params HistogramPhaseUnwrapping_Params; |
||||
#endif |
@ -0,0 +1,94 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
# Python 2/3 compatibility |
||||
from __future__ import print_function |
||||
|
||||
import os, numpy |
||||
|
||||
import cv2 as cv |
||||
|
||||
from tests_common import NewOpenCVTests |
||||
|
||||
class structured_light_test(NewOpenCVTests): |
||||
|
||||
def test_unwrap(self): |
||||
paramsPsp = cv.structured_light_SinusoidalPattern_Params(); |
||||
paramsFtp = cv.structured_light_SinusoidalPattern_Params(); |
||||
paramsFaps = cv.structured_light_SinusoidalPattern_Params(); |
||||
paramsPsp.methodId = cv.structured_light.PSP; |
||||
paramsFtp.methodId = cv.structured_light.FTP; |
||||
paramsFaps.methodId = cv.structured_light.FAPS; |
||||
|
||||
sinusPsp = cv.structured_light.SinusoidalPattern_create(paramsPsp) |
||||
sinusFtp = cv.structured_light.SinusoidalPattern_create(paramsFtp) |
||||
sinusFaps = cv.structured_light.SinusoidalPattern_create(paramsFaps) |
||||
|
||||
captures = [] |
||||
for i in range(0,3): |
||||
capture = self.get_sample('/cv/structured_light/data/capture_sin_%d.jpg'%i, cv.IMREAD_GRAYSCALE) |
||||
if capture is None: |
||||
raise unittest.SkipTest("Missing files with test data") |
||||
captures.append(capture) |
||||
|
||||
rows,cols = captures[0].shape |
||||
|
||||
unwrappedPhaseMapPspRef = self.get_sample('/cv/structured_light/data/unwrappedPspTest.jpg', |
||||
cv.IMREAD_GRAYSCALE) |
||||
unwrappedPhaseMapFtpRef = self.get_sample('/cv/structured_light/data/unwrappedFtpTest.jpg', |
||||
cv.IMREAD_GRAYSCALE) |
||||
unwrappedPhaseMapFapsRef = self.get_sample('/cv/structured_light/data/unwrappedFapsTest.jpg', |
||||
cv.IMREAD_GRAYSCALE) |
||||
|
||||
wrappedPhaseMap,shadowMask = sinusPsp.computePhaseMap(captures); |
||||
unwrappedPhaseMap = sinusPsp.unwrapPhaseMap(wrappedPhaseMap, (cols, rows), shadowMask=shadowMask) |
||||
unwrappedPhaseMap8 = unwrappedPhaseMap*1 + 128 |
||||
unwrappedPhaseMap8 = numpy.uint8(unwrappedPhaseMap8) |
||||
|
||||
sumOfDiff = 0 |
||||
count = 0 |
||||
for i in range(rows): |
||||
for j in range(cols): |
||||
ref = int(unwrappedPhaseMapPspRef[i, j]) |
||||
comp = int(unwrappedPhaseMap8[i, j]) |
||||
sumOfDiff += (ref - comp) |
||||
count += 1 |
||||
|
||||
ratio = sumOfDiff/float(count) |
||||
self.assertLessEqual(ratio, 0.2) |
||||
|
||||
wrappedPhaseMap,shadowMask = sinusFtp.computePhaseMap(captures); |
||||
unwrappedPhaseMap = sinusFtp.unwrapPhaseMap(wrappedPhaseMap, (cols, rows), shadowMask=shadowMask) |
||||
unwrappedPhaseMap8 = unwrappedPhaseMap*1 + 128 |
||||
unwrappedPhaseMap8 = numpy.uint8(unwrappedPhaseMap8) |
||||
|
||||
sumOfDiff = 0 |
||||
count = 0 |
||||
for i in range(rows): |
||||
for j in range(cols): |
||||
ref = int(unwrappedPhaseMapFtpRef[i, j]) |
||||
comp = int(unwrappedPhaseMap8[i, j]) |
||||
sumOfDiff += (ref - comp) |
||||
count += 1 |
||||
|
||||
ratio = sumOfDiff/float(count) |
||||
self.assertLessEqual(ratio, 0.2) |
||||
|
||||
wrappedPhaseMap,shadowMask2 = sinusFaps.computePhaseMap(captures); |
||||
unwrappedPhaseMap = sinusFaps.unwrapPhaseMap(wrappedPhaseMap, (cols, rows), shadowMask=shadowMask) |
||||
unwrappedPhaseMap8 = unwrappedPhaseMap*1 + 128 |
||||
unwrappedPhaseMap8 = numpy.uint8(unwrappedPhaseMap8) |
||||
|
||||
sumOfDiff = 0 |
||||
count = 0 |
||||
for i in range(rows): |
||||
for j in range(cols): |
||||
ref = int(unwrappedPhaseMapFapsRef[i, j]) |
||||
comp = int(unwrappedPhaseMap8[i, j]) |
||||
sumOfDiff += (ref - comp) |
||||
count += 1 |
||||
|
||||
ratio = sumOfDiff/float(count) |
||||
self.assertLessEqual(ratio, 0.2) |
||||
|
||||
if __name__ == '__main__': |
||||
NewOpenCVTests.bootstrap() |
Loading…
Reference in new issue