|
|
|
@ -19,7 +19,12 @@ namespace cv |
|
|
|
|
trackers.push_back(tracker); |
|
|
|
|
|
|
|
|
|
//Assign a random color to target
|
|
|
|
|
colors.push_back(Scalar(rand() % 256, rand() % 256, rand() % 256)); |
|
|
|
|
if (targetNum == 1) |
|
|
|
|
colors.push_back(Scalar(0, 0, 255)); |
|
|
|
|
else |
|
|
|
|
colors.push_back(Scalar(rand() % 256, rand() % 256, rand() % 256)); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//Target counter
|
|
|
|
|
targetNum++; |
|
|
|
@ -75,17 +80,14 @@ namespace cv |
|
|
|
|
|
|
|
|
|
bool DETECT_FLG = false; |
|
|
|
|
|
|
|
|
|
//printf("%d\n", targetNum);
|
|
|
|
|
//Detect all
|
|
|
|
|
for (int k = 0; k < targetNum; k++) |
|
|
|
|
tmpCandidates[k] = boundingBoxes[k]; |
|
|
|
|
//if (ocl::haveOpenCL())
|
|
|
|
|
if (ocl::haveOpenCL()) |
|
|
|
|
ocl_detect_all(imageForDetector, image_blurred, tmpCandidates, detectorResults, detect_flgs, trackers); |
|
|
|
|
else |
|
|
|
|
detect_all(imageForDetector, image_blurred, tmpCandidates, detectorResults, detect_flgs, trackers); |
|
|
|
|
//else
|
|
|
|
|
//DETECT_FLG = tldModel->detector->detect(imageForDetector, image_blurred, tmpCandid, detectorResults, tldModel->getMinSize());
|
|
|
|
|
|
|
|
|
|
//printf("BOOOLZZZ %d\n", detect_flgs[0]);
|
|
|
|
|
//printf("BOOOLXXX %d\n", detect_flgs[1]);
|
|
|
|
|
for (int k = 0; k < targetNum; k++) |
|
|
|
|
{ |
|
|
|
|
//TLD Tracker data extraction
|
|
|
|
@ -95,7 +97,6 @@ namespace cv |
|
|
|
|
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model)); |
|
|
|
|
Ptr<tld::Data> data = tracker->data; |
|
|
|
|
|
|
|
|
|
///////
|
|
|
|
|
data->frameNum++; |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < 2; i++) |
|
|
|
@ -125,14 +126,9 @@ namespace cv |
|
|
|
|
trackerNeedsReInit[k] = false; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
//printf("CanditateRes Size: %d \n", candidatesRes[k].size());
|
|
|
|
|
|
|
|
|
|
std::vector<double>::iterator it = std::max_element(candidatesRes[k].begin(), candidatesRes[k].end()); |
|
|
|
|
|
|
|
|
|
//dfprintf((stdout, "scale = %f\n", log(1.0 * boundingBox.width / (data->getMinSize()).width) / log(SCALE_STEP)));
|
|
|
|
|
//for( int i = 0; i < (int)candidatesRes.size(); i++ )
|
|
|
|
|
//dprintf(("\tcandidatesRes[%d] = %f\n", i, candidatesRes[i]));
|
|
|
|
|
//data->printme();
|
|
|
|
|
//tldModel->printme(stdout);
|
|
|
|
|
|
|
|
|
|
if (it == candidatesRes[k].end()) |
|
|
|
|
{ |
|
|
|
@ -445,9 +441,260 @@ namespace cv |
|
|
|
|
//printf("%d %f %f\n", k, srValue, scValue);
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//e2 = getTickCount();
|
|
|
|
|
//t = (e2 - e1) / getTickFrequency()*1000.0;
|
|
|
|
|
//printf("NN: %d\t%f\n", patches.size(), t);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (maxSc < 0) |
|
|
|
|
detect_flgs[k] = false; |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
res[k] = maxScRect; |
|
|
|
|
//printf("%f %f %f %f\n", maxScRect.x, maxScRect.y, maxScRect.width, maxScRect.height);
|
|
|
|
|
detect_flgs[k] = true; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
//e2 = getTickCount();
|
|
|
|
|
//t = (e2 - e1) / getTickFrequency()*1000.0;
|
|
|
|
|
//printf("NN: %d\t%f\n", patches.size(), t);
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void ocl_detect_all(const Mat& img, const Mat& imgBlurred, std::vector<Rect2d>& res, std::vector < std::vector < tld::TLDDetector::LabeledPatch >> &patches, std::vector<bool> &detect_flgs, |
|
|
|
|
std::vector<Ptr<Tracker>> &trackers) |
|
|
|
|
{ |
|
|
|
|
//TLD Tracker data extraction
|
|
|
|
|
Tracker* trackerPtr = trackers[0]; |
|
|
|
|
cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr); |
|
|
|
|
//TLD Model Extraction
|
|
|
|
|
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model)); |
|
|
|
|
Size initSize = tldModel->getMinSize(); |
|
|
|
|
|
|
|
|
|
for (int k = 0; k < trackers.size(); k++) |
|
|
|
|
patches[k].clear(); |
|
|
|
|
|
|
|
|
|
Mat_<uchar> standardPatch(tld::STANDARD_PATCH_SIZE, tld::STANDARD_PATCH_SIZE); |
|
|
|
|
Mat tmp; |
|
|
|
|
int dx = initSize.width / 10, dy = initSize.height / 10; |
|
|
|
|
Size2d size = img.size(); |
|
|
|
|
double scale = 1.0; |
|
|
|
|
int npos = 0, nneg = 0; |
|
|
|
|
double maxSc = -5.0; |
|
|
|
|
Rect2d maxScRect; |
|
|
|
|
int scaleID; |
|
|
|
|
std::vector <Mat> resized_imgs, blurred_imgs; |
|
|
|
|
|
|
|
|
|
std::vector <std::vector <Point>> varBuffer(trackers.size()), ensBuffer(trackers.size()); |
|
|
|
|
std::vector <std::vector <int>> varScaleIDs(trackers.size()), ensScaleIDs(trackers.size()); |
|
|
|
|
|
|
|
|
|
std::vector <Point> tmpP; |
|
|
|
|
std::vector <int> tmpI; |
|
|
|
|
|
|
|
|
|
//int64 e1, e2;
|
|
|
|
|
//double t;
|
|
|
|
|
//e1 = getTickCount();
|
|
|
|
|
|
|
|
|
|
//Detection part
|
|
|
|
|
//Generate windows and filter by variance
|
|
|
|
|
scaleID = 0; |
|
|
|
|
resized_imgs.push_back(img); |
|
|
|
|
blurred_imgs.push_back(imgBlurred); |
|
|
|
|
do |
|
|
|
|
{ |
|
|
|
|
Mat_<double> intImgP, intImgP2; |
|
|
|
|
tld::TLDDetector::computeIntegralImages(resized_imgs[scaleID], intImgP, intImgP2); |
|
|
|
|
for (int i = 0, imax = cvFloor((0.0 + resized_imgs[scaleID].cols - initSize.width) / dx); i < imax; i++) |
|
|
|
|
{ |
|
|
|
|
for (int j = 0, jmax = cvFloor((0.0 + resized_imgs[scaleID].rows - initSize.height) / dy); j < jmax; j++) |
|
|
|
|
{ |
|
|
|
|
//Optimized variance calculation
|
|
|
|
|
int x = dx * i, |
|
|
|
|
y = dy * j, |
|
|
|
|
width = initSize.width, |
|
|
|
|
height = initSize.height; |
|
|
|
|
double p = 0, p2 = 0; |
|
|
|
|
double A, B, C, D; |
|
|
|
|
|
|
|
|
|
A = intImgP(y, x); |
|
|
|
|
B = intImgP(y, x + width); |
|
|
|
|
C = intImgP(y + height, x); |
|
|
|
|
D = intImgP(y + height, x + width); |
|
|
|
|
p = (A + D - B - C) / (width * height); |
|
|
|
|
|
|
|
|
|
A = intImgP2(y, x); |
|
|
|
|
B = intImgP2(y, x + width); |
|
|
|
|
C = intImgP2(y + height, x); |
|
|
|
|
D = intImgP2(y + height, x + width); |
|
|
|
|
p2 = (A + D - B - C) / (width * height); |
|
|
|
|
double windowVar = p2 - p * p; |
|
|
|
|
|
|
|
|
|
//Loop for on all objects
|
|
|
|
|
for (int k = 0; k < trackers.size(); k++) |
|
|
|
|
{ |
|
|
|
|
//TLD Tracker data extraction
|
|
|
|
|
Tracker* trackerPtr = trackers[k]; |
|
|
|
|
cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr); |
|
|
|
|
//TLD Model Extraction
|
|
|
|
|
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model)); |
|
|
|
|
|
|
|
|
|
//Optimized variance calculation
|
|
|
|
|
bool varPass = (windowVar > tld::VARIANCE_THRESHOLD * *tldModel->detector->originalVariancePtr); |
|
|
|
|
|
|
|
|
|
if (!varPass) |
|
|
|
|
continue; |
|
|
|
|
varBuffer[k].push_back(Point(dx * i, dy * j)); |
|
|
|
|
varScaleIDs[k].push_back(scaleID); |
|
|
|
|
|
|
|
|
|
//Debug display candidates after Variance Filter
|
|
|
|
|
double curScale = pow(tld::SCALE_STEP, scaleID); |
|
|
|
|
debugStack[0].push_back(Rect2d(dx * i* curScale, dy * j*curScale, tldModel->getMinSize().width*curScale, tldModel->getMinSize().height*curScale)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
scaleID++; |
|
|
|
|
size.width /= tld::SCALE_STEP; |
|
|
|
|
size.height /= tld::SCALE_STEP; |
|
|
|
|
scale *= tld::SCALE_STEP; |
|
|
|
|
resize(img, tmp, size, 0, 0, tld::DOWNSCALE_MODE); |
|
|
|
|
resized_imgs.push_back(tmp); |
|
|
|
|
GaussianBlur(resized_imgs[scaleID], tmp, tld::GaussBlurKernelSize, 0.0f); |
|
|
|
|
blurred_imgs.push_back(tmp); |
|
|
|
|
} while (size.width >= initSize.width && size.height >= initSize.height); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//e2 = getTickCount();
|
|
|
|
|
//t = (e2 - e1) / getTickFrequency()*1000.0;
|
|
|
|
|
//printf("Variance: %d\t%f\n", varBuffer.size(), t);
|
|
|
|
|
|
|
|
|
|
//printf("OrigVar 1: %f\n", *tldModel->detector->originalVariancePtr);
|
|
|
|
|
|
|
|
|
|
//Encsemble classification
|
|
|
|
|
//e1 = getTickCount();
|
|
|
|
|
for (int k = 0; k < trackers.size(); k++) |
|
|
|
|
{ |
|
|
|
|
//TLD Tracker data extraction
|
|
|
|
|
Tracker* trackerPtr = trackers[k]; |
|
|
|
|
cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr); |
|
|
|
|
//TLD Model Extraction
|
|
|
|
|
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model)); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < (int)varBuffer[k].size(); i++) |
|
|
|
|
{ |
|
|
|
|
tldModel->detector->prepareClassifiers(static_cast<int> (blurred_imgs[varScaleIDs[k][i]].step[0])); |
|
|
|
|
|
|
|
|
|
double ensRes = 0; |
|
|
|
|
uchar* data = &blurred_imgs[varScaleIDs[k][i]].at<uchar>(varBuffer[k][i].y, varBuffer[k][i].x); |
|
|
|
|
for (int x = 0; x < (int)tldModel->detector->classifiers.size(); x++) |
|
|
|
|
{ |
|
|
|
|
int position = 0; |
|
|
|
|
for (int n = 0; n < (int)tldModel->detector->classifiers[x].measurements.size(); n++) |
|
|
|
|
{ |
|
|
|
|
position = position << 1; |
|
|
|
|
if (data[tldModel->detector->classifiers[x].offset[n].x] < data[tldModel->detector->classifiers[x].offset[n].y]) |
|
|
|
|
position++; |
|
|
|
|
} |
|
|
|
|
double posNum = (double)tldModel->detector->classifiers[x].posAndNeg[position].x; |
|
|
|
|
double negNum = (double)tldModel->detector->classifiers[x].posAndNeg[position].y; |
|
|
|
|
if (posNum == 0.0 && negNum == 0.0) |
|
|
|
|
continue; |
|
|
|
|
else |
|
|
|
|
ensRes += posNum / (posNum + negNum); |
|
|
|
|
} |
|
|
|
|
ensRes /= tldModel->detector->classifiers.size(); |
|
|
|
|
ensRes = tldModel->detector->ensembleClassifierNum(&blurred_imgs[varScaleIDs[k][i]].at<uchar>(varBuffer[k][i].y, varBuffer[k][i].x)); |
|
|
|
|
|
|
|
|
|
if (ensRes <= tld::ENSEMBLE_THRESHOLD) |
|
|
|
|
continue; |
|
|
|
|
ensBuffer[k].push_back(varBuffer[k][i]); |
|
|
|
|
ensScaleIDs[k].push_back(varScaleIDs[k][i]); |
|
|
|
|
} |
|
|
|
|
/*
|
|
|
|
|
for (int i = 0; i < (int)varBuffer[k].size(); i++) |
|
|
|
|
{ |
|
|
|
|
tldModel->detector->prepareClassifiers(static_cast<int> (blurred_imgs[varScaleIDs[k][i]].step[0])); |
|
|
|
|
if (tldModel->detector->ensembleClassifierNum(&blurred_imgs[varScaleIDs[k][i]].at<uchar>(varBuffer[k][i].y, varBuffer[k][i].x)) <= tld::ENSEMBLE_THRESHOLD) |
|
|
|
|
continue; |
|
|
|
|
ensBuffer[k].push_back(varBuffer[k][i]); |
|
|
|
|
ensScaleIDs[k].push_back(varScaleIDs[k][i]); |
|
|
|
|
} |
|
|
|
|
*/ |
|
|
|
|
} |
|
|
|
|
//e2 = getTickCount();
|
|
|
|
|
//t = (e2 - e1) / getTickFrequency()*1000.0;
|
|
|
|
|
|
|
|
|
|
//printf("varBuffer 1: %d\n", varBuffer[0].size());
|
|
|
|
|
//printf("ensBuffer 1: %d\n", ensBuffer[0].size());
|
|
|
|
|
|
|
|
|
|
//printf("varBuffer 2: %d\n", varBuffer[1].size());
|
|
|
|
|
//printf("ensBuffer 2: %d\n", ensBuffer[1].size());
|
|
|
|
|
|
|
|
|
|
//NN classification
|
|
|
|
|
//e1 = getTickCount();
|
|
|
|
|
for (int k = 0; k < trackers.size(); k++) |
|
|
|
|
{ |
|
|
|
|
//TLD Tracker data extraction
|
|
|
|
|
Tracker* trackerPtr = trackers[k]; |
|
|
|
|
cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr); |
|
|
|
|
//TLD Model Extraction
|
|
|
|
|
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model)); |
|
|
|
|
//Size InitSize = tldModel->getMinSize();
|
|
|
|
|
npos = 0; |
|
|
|
|
nneg = 0; |
|
|
|
|
maxSc = -5.0; |
|
|
|
|
|
|
|
|
|
//Prepare batch of patches
|
|
|
|
|
int numOfPatches = (int)ensBuffer[k].size(); |
|
|
|
|
Mat_<uchar> stdPatches(numOfPatches, 225); |
|
|
|
|
double *resultSr = new double[numOfPatches]; |
|
|
|
|
double *resultSc = new double[numOfPatches]; |
|
|
|
|
|
|
|
|
|
uchar *patchesData = stdPatches.data; |
|
|
|
|
for (int i = 0; i < (int)ensBuffer.size(); i++) |
|
|
|
|
{ |
|
|
|
|
tld::resample(resized_imgs[ensScaleIDs[k][i]], Rect2d(ensBuffer[k][i], initSize), standardPatch); |
|
|
|
|
uchar *stdPatchData = standardPatch.data; |
|
|
|
|
for (int j = 0; j < 225; j++) |
|
|
|
|
patchesData[225 * i + j] = stdPatchData[j]; |
|
|
|
|
} |
|
|
|
|
//Calculate Sr and Sc batches
|
|
|
|
|
tldModel->detector->ocl_batchSrSc(stdPatches, resultSr, resultSc, numOfPatches); |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < (int)ensBuffer[k].size(); i++) |
|
|
|
|
{ |
|
|
|
|
tld::TLDDetector::LabeledPatch labPatch; |
|
|
|
|
standardPatch.data = &stdPatches.data[225 * i]; |
|
|
|
|
double curScale = pow(tld::SCALE_STEP, ensScaleIDs[k][i]); |
|
|
|
|
labPatch.rect = Rect2d(ensBuffer[k][i].x*curScale, ensBuffer[k][i].y*curScale, initSize.width * curScale, initSize.height * curScale); |
|
|
|
|
tld::resample(resized_imgs[ensScaleIDs[k][i]], Rect2d(ensBuffer[k][i], initSize), standardPatch); |
|
|
|
|
|
|
|
|
|
double srValue, scValue; |
|
|
|
|
srValue = resultSr[i]; |
|
|
|
|
|
|
|
|
|
////To fix: Check the paper, probably this cause wrong learning
|
|
|
|
|
//
|
|
|
|
|
labPatch.isObject = srValue > tld::THETA_NN; |
|
|
|
|
labPatch.shouldBeIntegrated = abs(srValue - tld::THETA_NN) < 0.1; |
|
|
|
|
patches[k].push_back(labPatch); |
|
|
|
|
//
|
|
|
|
|
|
|
|
|
|
if (!labPatch.isObject) |
|
|
|
|
{ |
|
|
|
|
nneg++; |
|
|
|
|
continue; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
npos++; |
|
|
|
|
} |
|
|
|
|
scValue = resultSc[i]; |
|
|
|
|
if (scValue > maxSc) |
|
|
|
|
{ |
|
|
|
|
maxSc = scValue; |
|
|
|
|
maxScRect = labPatch.rect; |
|
|
|
|
} |
|
|
|
|
//printf("%d %f %f\n", k, srValue, scValue);
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (maxSc < 0) |
|
|
|
|
detect_flgs[k] = false; |
|
|
|
@ -458,5 +705,9 @@ namespace cv |
|
|
|
|
detect_flgs[k] = true; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
//e2 = getTickCount();
|
|
|
|
|
//t = (e2 - e1) / getTickFrequency()*1000.0;
|
|
|
|
|
//printf("NN: %d\t%f\n", patches.size(), t);
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
} |