|
|
|
@ -935,7 +935,7 @@ public: |
|
|
|
|
|
|
|
|
|
protected: |
|
|
|
|
void normalizeAndZCA(Mat& patches); |
|
|
|
|
double eval_feature(Mat& feature, double* prob_estimates); |
|
|
|
|
double eval_feature(Mat& feature, vector<double>& prob_estimates); |
|
|
|
|
|
|
|
|
|
private: |
|
|
|
|
int nr_class; // number of classes
|
|
|
|
@ -1089,7 +1089,7 @@ void OCRHMMClassifierCNN::eval( InputArray _src, vector<int>& out_class, vector< |
|
|
|
|
(feature_max.at<double>(0,k)-feature_min.at<double>(0,k)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
double *p = new double[nr_class]; |
|
|
|
|
vector<double> p(nr_class, 0); |
|
|
|
|
double predict_label = eval_feature(feature,p); |
|
|
|
|
//cout << " Prediction: " << vocabulary[predict_label] << " with probability " << p[0] << endl;
|
|
|
|
|
if (predict_label < 0) |
|
|
|
@ -1107,7 +1107,6 @@ void OCRHMMClassifierCNN::eval( InputArray _src, vector<int>& out_class, vector< |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// normalize for contrast and apply ZCA whitening to a set of image patches
|
|
|
|
@ -1157,11 +1156,8 @@ void OCRHMMClassifierCNN::normalizeAndZCA(Mat& patches) |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
double OCRHMMClassifierCNN::eval_feature(Mat& feature, double* prob_estimates) |
|
|
|
|
double OCRHMMClassifierCNN::eval_feature(Mat& feature, vector<double>& prob_estimates) |
|
|
|
|
{ |
|
|
|
|
for(int i=0;i<nr_class;i++) |
|
|
|
|
prob_estimates[i] = 0; |
|
|
|
|
|
|
|
|
|
for(int idx=0; idx<nr_feature; idx++) |
|
|
|
|
for(int i=0;i<nr_class;i++) |
|
|
|
|
prob_estimates[i] += weights.at<float>(idx,i)*feature.at<double>(0,idx); //TODO use vectorized dot product
|
|
|
|
|