parent
66c728ae24
commit
b65a84fac0
1 changed files with 152 additions and 0 deletions
@ -0,0 +1,152 @@ |
||||
#include <opencv2/dnn.hpp> |
||||
#include <opencv2/imgproc.hpp> |
||||
#include <opencv2/highgui.hpp> |
||||
using namespace cv; |
||||
using namespace cv::dnn; |
||||
|
||||
#include <fstream> |
||||
#include <iostream> |
||||
#include <cstdlib> |
||||
using namespace std; |
||||
|
||||
static const string fcnType = "fcn8s"; |
||||
|
||||
|
||||
static void colorizeSegmentation(dnn::Blob& score, |
||||
const vector<cv::Vec3b>& colors, |
||||
cv::Mat& segm) |
||||
{ |
||||
const int rows = score.rows(); |
||||
const int cols = score.cols(); |
||||
const int chns = score.channels(); |
||||
|
||||
cv::Mat maxCl(rows, cols, CV_8UC1); |
||||
cv::Mat maxVal(rows, cols, CV_32FC1); |
||||
for (int ch = 0; ch < chns; ch++) |
||||
{ |
||||
for (int row = 0; row < rows; row++) |
||||
{ |
||||
const float* ptrScore = score.ptrf(0, ch, row); |
||||
uchar* ptrMaxCl = maxCl.ptr<uchar>(row); |
||||
float* ptrMaxVal = maxVal.ptr<float>(row); |
||||
for (int col = 0; col < cols; col++) |
||||
{ |
||||
if (ptrScore[col] > ptrMaxVal[col]) |
||||
{ |
||||
ptrMaxVal[col] = ptrScore[col]; |
||||
ptrMaxCl[col] = ch; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
segm.create(rows, cols, CV_8UC3); |
||||
for (int row = 0; row < rows; row++) |
||||
{ |
||||
const uchar* ptrMaxCl = maxCl.ptr<uchar>(row); |
||||
cv::Vec3b* ptrSegm = segm.ptr<cv::Vec3b>(row); |
||||
for (int col = 0; col < cols; col++) |
||||
{ |
||||
ptrSegm[col] = colors[ptrMaxCl[col]]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
const char* about = "This sample uses Single-Shot Detector to detect objects " |
||||
"from camera\n"; // TODO: link
|
||||
|
||||
const char* params |
||||
= "{ help | help | false | print usage }" |
||||
"{ proto | model prototxt file | | model configuration }" |
||||
"{ model | caffemodel file | | model weights }"; |
||||
|
||||
int main(int argc, char** argv) |
||||
{ |
||||
cv::CommandLineParser parser(argc, argv, params); |
||||
|
||||
if (parser.get<bool>("help")) |
||||
{ |
||||
std::cout << about << std::endl; |
||||
parser.printMessage(); |
||||
return 0; |
||||
} |
||||
|
||||
String modelConfiguration = parser.get<string>("proto"); |
||||
String modelBinary = parser.get<string>("model"); |
||||
|
||||
//! [Create the importer of Caffe model]
|
||||
Ptr<dnn::Importer> importer; |
||||
|
||||
// Import Caffe SSD model
|
||||
try |
||||
{ |
||||
importer = dnn::createCaffeImporter(modelConfiguration, modelBinary); |
||||
} |
||||
catch (const cv::Exception &err) //Importer can throw errors, we will catch them
|
||||
{ |
||||
cerr << err.msg << endl; |
||||
} |
||||
//! [Create the importer of Caffe model]
|
||||
|
||||
if (!importer) |
||||
{ |
||||
cerr << "Can't load network by using the following files: " << endl; |
||||
cerr << "prototxt: " << modelConfiguration << endl; |
||||
cerr << "caffemodel: " << modelBinary << endl; |
||||
cerr << "Models can be downloaded here:" << endl; |
||||
cerr << "https://github.com/weiliu89/caffe/tree/ssd#models" << endl; |
||||
exit(-1); |
||||
} |
||||
|
||||
//! [Initialize network]
|
||||
dnn::Net net; |
||||
importer->populateNet(net); |
||||
importer.release(); //We don't need importer anymore
|
||||
//! [Initialize network]
|
||||
|
||||
VideoCapture camera; |
||||
if (!camera.open(0)) |
||||
{ |
||||
cout << "Unable to open camera stream" << endl; |
||||
return 0; |
||||
} |
||||
|
||||
for (;; ) |
||||
{ |
||||
Mat frame; |
||||
camera >> frame; |
||||
if (frame.empty()) |
||||
break; |
||||
|
||||
|
||||
//! [Prepare blob]
|
||||
resize(frame, frame, Size(300, 300)); //SSD accepts 300x300 RGB-images
|
||||
dnn::Blob inputBlob = dnn::Blob(frame); //Convert Mat to dnn::Blob image
|
||||
//! [Prepare blob]
|
||||
|
||||
//! [Set input blob]
|
||||
net.setBlob(".data", inputBlob); //set the network input
|
||||
//! [Set input blob]
|
||||
|
||||
//! [Make forward pass]
|
||||
net.forward(); //compute output
|
||||
//! [Make forward pass]
|
||||
|
||||
//! [Gather output]
|
||||
dnn::Blob detection = net.getBlob("detection_out"); |
||||
|
||||
// cv::Mat colorize;
|
||||
// colorizeSegmentation(score, colors, colorize);
|
||||
// cv::Mat show;
|
||||
// cv::addWeighted(img, 0.4, colorize, 0.6, 0.0, show);
|
||||
// cv::imshow("show", show);
|
||||
// cv::waitKey(0);
|
||||
// return 0;
|
||||
|
||||
imshow("frame", frame); |
||||
if (waitKey(1) == 27) |
||||
break; // stop capturing by pressing ESC
|
||||
} |
||||
|
||||
camera.release(); |
||||
} // main
|
Loading…
Reference in new issue