parent
abd998d1af
commit
acc55b24ab
2 changed files with 346 additions and 0 deletions
@ -0,0 +1,259 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "../precomp.hpp" |
||||
#include "layers_common.hpp" |
||||
#include "prior_box_layer.hpp" |
||||
#include <float.h> |
||||
#include <algorithm> |
||||
#include <cmath> |
||||
|
||||
namespace cv |
||||
{ |
||||
namespace dnn |
||||
{ |
||||
|
||||
void PriorBoxLayer::checkParameter(const LayerParams ¶ms, const string ¶meterName) |
||||
{ |
||||
if (!params.has(parameterName)) |
||||
{ |
||||
CV_Error(Error::StsBadArg, "PriorBox layer parameter does not contain " + parameterName + " index."); |
||||
} |
||||
} |
||||
|
||||
PriorBoxLayer::PriorBoxLayer(LayerParams ¶ms) : Layer(params) |
||||
{ |
||||
checkParameter(params, "min_size"); |
||||
|
||||
_minSize = params.min_size(); |
||||
CV_Assert(_minSize > 0); |
||||
|
||||
_aspectRatios.clear(); |
||||
_aspectRatios.push_back(1.); |
||||
|
||||
_flip = params.flip(); |
||||
|
||||
for (int i = 0; i < params.aspect_ratio_size(); ++i) |
||||
{ |
||||
float aspectRatio = params.aspect_ratio(i); |
||||
bool already_exist = false; |
||||
|
||||
for (int j = 0; j < _aspectRatios.size(); ++j) |
||||
{ |
||||
if (fabs(aspectRatio - _aspectRatios[j]) < 1e-6) |
||||
{ |
||||
already_exist = true; |
||||
break; |
||||
} |
||||
} |
||||
if (!already_exist) |
||||
{ |
||||
_aspectRatios.push_back(aspectRatio); |
||||
if (_flip) |
||||
{ |
||||
_aspectRatios.push_back(1./aspectRatio); |
||||
} |
||||
} |
||||
} |
||||
|
||||
_numPriors = _aspectRatios.size(); |
||||
|
||||
_maxSize = -1; |
||||
if (params.has(max_size)) |
||||
{ |
||||
_maxSize = params.max_size(); |
||||
CV_Assert(_maxSize > _minSize); |
||||
|
||||
_numPriors += 1; |
||||
} |
||||
|
||||
_clip = params.clip(); |
||||
|
||||
int varianceSize = params.variance_size(); |
||||
if (varianceSize > 1) |
||||
{ |
||||
// Must and only provide 4 variance.
|
||||
CV_Assert(varianceSize == 4); |
||||
|
||||
for (int i = 0; i < varianceSize; ++i) |
||||
{ |
||||
float variance = params.variance(i); |
||||
CV_Assert(variance > 0); |
||||
_variance.push_back(variance); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
if (varianceSize == 1) |
||||
{ |
||||
float variance = params.variance(0); |
||||
CV_Assert(variance > 0); |
||||
_variance.push_back(variance); |
||||
} |
||||
else |
||||
{ |
||||
// Set default to 0.1.
|
||||
_variance.push_back(0.1); |
||||
} |
||||
} |
||||
} |
||||
|
||||
void PriorBoxLayer::allocate(const std::vector<Blob*> &inputs, std::vector<Blob> &outputs) |
||||
{ |
||||
CV_Assert(inputs.size() == 2); |
||||
|
||||
_layerWidth = inputs[0]->width(); |
||||
_layerHeight = inputs[0]->height(); |
||||
|
||||
_imageWidth = inputs[1]->width(); |
||||
_imageHeight = inputs[1]->height(); |
||||
|
||||
_stepX = static_cast<float>(_imageWidth) / _layerWidth; |
||||
_stepY = static_cast<float>(_imageHeight) / _layerHeight; |
||||
|
||||
// Since all images in a batch has same height and width, we only need to
|
||||
// generate one set of priors which can be shared across all images.
|
||||
size_t outNum = 1; |
||||
// 2 channels. First channel stores the mean of each prior coordinate.
|
||||
// Second channel stores the variance of each prior coordinate.
|
||||
size_t outChannels = 2; |
||||
size_t outHeight = _layerHeight; |
||||
size_t outWidth = _layerWidth * _numPriors * 4; |
||||
|
||||
_outChannelSize = _layerHeight * _layerWidth * _numPriors * 4; |
||||
|
||||
outputs[0].create(BlobShape(outNum, outChannels, outHeight, outWidth)); |
||||
} |
||||
|
||||
void PriorBoxLayer::forward(std::vector<Blob*> &inputs, std::vector<Blob> &outputs) |
||||
{ |
||||
float* outputPtr = outputs[0].ptrf(); |
||||
|
||||
// first prior: aspect_ratio = 1, size = min_size
|
||||
_boxWidth = _boxHeight = _minSize; |
||||
|
||||
int idx = 0; |
||||
for (int h = 0; h < _layerHeight; ++h) |
||||
{ |
||||
for (int w = 0; w < _layerWidth; ++w) |
||||
{ |
||||
float center_x = (w + 0.5) * _stepX; |
||||
float center_y = (h + 0.5) * _stepY; |
||||
// xmin
|
||||
outputPtr[idx++] = (center_x - _boxWidth / 2.) / _imageWidth; |
||||
// ymin
|
||||
outputPtr[idx++] = (center_y - _boxHeight / 2.) / _imageHeight; |
||||
// xmax
|
||||
outputPtr[idx++] = (center_x + _boxWidth / 2.) / _imageWidth; |
||||
// ymax
|
||||
outputPtr[idx++] = (center_y + _boxHeight / 2.) / _imageHeight; |
||||
|
||||
if (_maxSize > 0) |
||||
{ |
||||
// second prior: aspect_ratio = 1, size = sqrt(min_size * max_size)
|
||||
_boxWidth = _boxHeight = sqrt(_minSize * _maxSize); |
||||
// xmin
|
||||
outputPtr[idx++] = (center_x - _boxWidth / 2.) / _imageWidth; |
||||
// ymin
|
||||
outputPtr[idx++] = (center_y - _boxHeight / 2.) / _imageHeight; |
||||
// xmax
|
||||
outputPtr[idx++] = (center_x + _boxWidth / 2.) / _imageWidth; |
||||
// ymax
|
||||
outputPtr[idx++] = (center_y + _boxHeight / 2.) / _imageHeight; |
||||
} |
||||
|
||||
// rest of priors
|
||||
for (int r = 0; r < _aspectRatios.size(); ++r) |
||||
{ |
||||
float ar = _aspectRatios[r]; |
||||
if (fabs(ar - 1.) < 1e-6) |
||||
{ |
||||
continue; |
||||
} |
||||
_boxWidth = _minSize * sqrt(ar); |
||||
_boxHeight = _minSize / sqrt(ar); |
||||
// xmin
|
||||
outputPtr[idx++] = (center_x - _boxWidth / 2.) / _imageWidth; |
||||
// ymin
|
||||
outputPtr[idx++] = (center_y - _boxHeight / 2.) / _imageHeight; |
||||
// xmax
|
||||
outputPtr[idx++] = (center_x + _boxWidth / 2.) / _imageWidth; |
||||
// ymax
|
||||
outputPtr[idx++] = (center_y + _boxHeight / 2.) / _imageHeight; |
||||
} |
||||
} |
||||
} |
||||
// clip the prior's coordidate such that it is within [0, 1]
|
||||
if (_clip) |
||||
{ |
||||
for (int d = 0; d < _outChannelSize; ++d) |
||||
{ |
||||
outputPtr[d] = std::min<float>(std::max<float>(outputPtr[d], 0.), 1.); |
||||
} |
||||
} |
||||
// set the variance.
|
||||
outputPtr = outputs[0].ptrf(0, 1); |
||||
if(_variance.size() == 1) |
||||
{ |
||||
Mat secondChannel(outputs[0].height(), outputs[0].width(), CV_32F, outputPtr); |
||||
secondChannel.setTo(Scalar(_variance[0])); |
||||
} |
||||
else |
||||
{ |
||||
int count = 0; |
||||
for (int h = 0; h < _layerHeight; ++h) |
||||
{ |
||||
for (int w = 0; w < _layerWidth; ++w) |
||||
{ |
||||
for (int i = 0; i < _numPriors; ++i) |
||||
{ |
||||
for (int j = 0; j < 4; ++j) |
||||
{ |
||||
outputPtr[count] = _variance[j]; |
||||
++count; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
} |
||||
} |
||||
} |
||||
} |
@ -0,0 +1,87 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_DNN_LAYERS_PRIOR_BOX_LAYER_HPP__ |
||||
#define __OPENCV_DNN_LAYERS_PRIOR_BOX_LAYER_HPP__ |
||||
#include "../precomp.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
namespace dnn |
||||
{ |
||||
class PriorBoxLayer : public Layer |
||||
{ |
||||
size_t _layerWidth; |
||||
size_t _layerHeight; |
||||
|
||||
size_t _imageWidth; |
||||
size_t _imageHeight; |
||||
|
||||
size_t _outChannelSize; |
||||
|
||||
float _stepX; |
||||
float _stepY; |
||||
|
||||
float _minSize; |
||||
float _maxSize; |
||||
|
||||
float _boxWidth; |
||||
float _boxHeight; |
||||
|
||||
std::vector<float> _aspectRatios; |
||||
std::vector<float> _variance; |
||||
|
||||
bool _flip; |
||||
bool _clip; |
||||
|
||||
size_t _numPriors; |
||||
|
||||
static const size_t _numAxes = 4; |
||||
|
||||
public: |
||||
PriorBoxLayer(LayerParams ¶ms); |
||||
void allocate(const std::vector<Blob*> &inputs, std::vector<Blob> &outputs); |
||||
void forward(std::vector<Blob*> &inputs, std::vector<Blob> &outputs); |
||||
void checkParameter(const LayerParams ¶ms, const std::string ¶meterName); |
||||
}; |
||||
} |
||||
} |
||||
#endif |
Loading…
Reference in new issue