|
|
|
@ -7,39 +7,24 @@ |
|
|
|
|
|
|
|
|
|
namespace opencv_test { namespace { |
|
|
|
|
|
|
|
|
|
class CV_BackgroundSubtractorTest : public cvtest::BaseTest |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
CV_BackgroundSubtractorTest(); |
|
|
|
|
protected: |
|
|
|
|
void run(int); |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
CV_BackgroundSubtractorTest::CV_BackgroundSubtractorTest() |
|
|
|
|
{ |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* This test checks the following: |
|
|
|
|
* (i) BackgroundSubtractorGMG can operate with matrices of various types and sizes |
|
|
|
|
* (ii) Training mode returns empty fgmask |
|
|
|
|
* (iii) End of training mode, and anomalous frame yields every pixel detected as FG |
|
|
|
|
*/ |
|
|
|
|
void CV_BackgroundSubtractorTest::run(int) |
|
|
|
|
typedef testing::TestWithParam<std::tuple<perf::MatDepth,int>> bgsubgmg_allTypes; |
|
|
|
|
TEST_P(bgsubgmg_allTypes, accuracy) |
|
|
|
|
{ |
|
|
|
|
int code = cvtest::TS::OK; |
|
|
|
|
RNG& rng = ts->get_rng(); |
|
|
|
|
int type = ((unsigned int)rng)%7; //!< pick a random type, 0 - 6, defined in types_c.h
|
|
|
|
|
int channels = 1 + ((unsigned int)rng)%4; //!< random number of channels from 1 to 4.
|
|
|
|
|
int channelsAndType = CV_MAKETYPE(type,channels); |
|
|
|
|
int width = 2 + ((unsigned int)rng)%98; //!< Mat will be 2 to 100 in width and height
|
|
|
|
|
int height = 2 + ((unsigned int)rng)%98; |
|
|
|
|
const int depth = get<0>(GetParam()); |
|
|
|
|
const int ncn = get<1>(GetParam()); |
|
|
|
|
const int mtype = CV_MAKETYPE(depth, ncn); |
|
|
|
|
const int width = 64; |
|
|
|
|
const int height = 64; |
|
|
|
|
RNG& rng = TS::ptr()->get_rng(); |
|
|
|
|
|
|
|
|
|
Ptr<BackgroundSubtractorGMG> fgbg = createBackgroundSubtractorGMG(); |
|
|
|
|
Mat fgmask; |
|
|
|
|
|
|
|
|
|
if (!fgbg) |
|
|
|
|
CV_Error(Error::StsError,"Failed to create Algorithm\n"); |
|
|
|
|
ASSERT_TRUE(fgbg != nullptr) << "Failed to call createBackgroundSubtractorGMG()"; |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Set a few parameters |
|
|
|
@ -57,49 +42,51 @@ void CV_BackgroundSubtractorTest::run(int) |
|
|
|
|
* Max value for simulated images picked randomly in upper half of type range |
|
|
|
|
* Min value for simulated images picked randomly in lower half of type range |
|
|
|
|
*/ |
|
|
|
|
if (type == CV_8U) |
|
|
|
|
if (depth == CV_8U) |
|
|
|
|
{ |
|
|
|
|
uchar half = UCHAR_MAX/2; |
|
|
|
|
maxd = (unsigned char)rng.uniform(half+32, UCHAR_MAX); |
|
|
|
|
mind = (unsigned char)rng.uniform(0, half-32); |
|
|
|
|
} |
|
|
|
|
else if (type == CV_8S) |
|
|
|
|
else if (depth == CV_8S) |
|
|
|
|
{ |
|
|
|
|
maxd = (char)rng.uniform(32, CHAR_MAX); |
|
|
|
|
mind = (char)rng.uniform(CHAR_MIN, -32); |
|
|
|
|
} |
|
|
|
|
else if (type == CV_16U) |
|
|
|
|
else if (depth == CV_16U) |
|
|
|
|
{ |
|
|
|
|
ushort half = USHRT_MAX/2; |
|
|
|
|
maxd = (unsigned int)rng.uniform(half+32, USHRT_MAX); |
|
|
|
|
mind = (unsigned int)rng.uniform(0, half-32); |
|
|
|
|
} |
|
|
|
|
else if (type == CV_16S) |
|
|
|
|
else if (depth == CV_16S) |
|
|
|
|
{ |
|
|
|
|
maxd = rng.uniform(32, SHRT_MAX); |
|
|
|
|
mind = rng.uniform(SHRT_MIN, -32); |
|
|
|
|
} |
|
|
|
|
else if (type == CV_32S) |
|
|
|
|
else if (depth == CV_32S) |
|
|
|
|
{ |
|
|
|
|
maxd = rng.uniform(32, INT_MAX); |
|
|
|
|
mind = rng.uniform(INT_MIN, -32); |
|
|
|
|
} |
|
|
|
|
else if (type == CV_32F) |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
maxd = rng.uniform(32.0f, FLT_MAX); |
|
|
|
|
mind = rng.uniform(-FLT_MAX, -32.0f); |
|
|
|
|
} |
|
|
|
|
else if (type == CV_64F) |
|
|
|
|
{ |
|
|
|
|
maxd = rng.uniform(32.0, DBL_MAX); |
|
|
|
|
mind = rng.uniform(-DBL_MAX, -32.0); |
|
|
|
|
ASSERT_TRUE( (depth == CV_32F)||(depth == CV_64F) ) << "Unsupported depth"; |
|
|
|
|
const double harf = 0.5; |
|
|
|
|
const double bias = 0.125; // = 32/256 (Like CV_8U)
|
|
|
|
|
maxd = rng.uniform(harf + bias, 1.0); |
|
|
|
|
mind = rng.uniform(0.0, harf - bias ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
fgbg->setMinVal(mind); |
|
|
|
|
fgbg->setMaxVal(maxd); |
|
|
|
|
|
|
|
|
|
Mat simImage = Mat::zeros(height, width, channelsAndType); |
|
|
|
|
int numLearningFrames = 120; |
|
|
|
|
Mat simImage(height, width, mtype); |
|
|
|
|
Mat fgmask; |
|
|
|
|
|
|
|
|
|
const Mat fullbg(height, width, CV_8UC1, cv::Scalar(0)); // all background.
|
|
|
|
|
|
|
|
|
|
const int numLearningFrames = 120; |
|
|
|
|
for (int i = 0; i < numLearningFrames; ++i) |
|
|
|
|
{ |
|
|
|
|
/**
|
|
|
|
@ -111,27 +98,21 @@ void CV_BackgroundSubtractorTest::run(int) |
|
|
|
|
* Feed simulated images into background subtractor |
|
|
|
|
*/ |
|
|
|
|
fgbg->apply(simImage,fgmask); |
|
|
|
|
Mat fullbg = Mat::zeros(simImage.rows, simImage.cols, CV_8U); |
|
|
|
|
|
|
|
|
|
//! fgmask should be entirely background during training
|
|
|
|
|
code = cvtest::cmpEps2( ts, fgmask, fullbg, 0, false, "The training foreground mask" ); |
|
|
|
|
if (code < 0) |
|
|
|
|
ts->set_failed_test_info( code ); |
|
|
|
|
EXPECT_EQ(cv::norm(fgmask, fullbg, NORM_INF), 0) << "foreground mask should be entirely background during training"; |
|
|
|
|
} |
|
|
|
|
//! generate last image, distinct from training images
|
|
|
|
|
rng.fill(simImage, RNG::UNIFORM, mind, maxd); |
|
|
|
|
|
|
|
|
|
fgbg->apply(simImage,fgmask); |
|
|
|
|
//! now fgmask should be entirely foreground
|
|
|
|
|
Mat fullfg = 255*Mat::ones(simImage.rows, simImage.cols, CV_8U); |
|
|
|
|
code = cvtest::cmpEps2( ts, fgmask, fullfg, 255, false, "The final foreground mask" ); |
|
|
|
|
if (code < 0) |
|
|
|
|
{ |
|
|
|
|
ts->set_failed_test_info( code ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const Mat fullfg(height, width, CV_8UC1, cv::Scalar(255)); // all foreground.
|
|
|
|
|
EXPECT_EQ(cv::norm(fgmask, fullfg, NORM_INF), 0) << "foreground mask should be entirely foreground finally"; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST(VIDEO_BGSUBGMG, accuracy) { CV_BackgroundSubtractorTest test; test.safe_run(); } |
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, |
|
|
|
|
bgsubgmg_allTypes, |
|
|
|
|
testing::Combine( |
|
|
|
|
testing::Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F), |
|
|
|
|
testing::Values(1,2,3,4))); |
|
|
|
|
|
|
|
|
|
}} // namespace
|
|
|
|
|