@ -0,0 +1,17 @@ |
||||
@incollection{KB2001, |
||||
title={An improved adaptive background mixture model for real-time tracking with shadow detection}, |
||||
author={KaewTraKulPong, Pakorn and Bowden, Richard}, |
||||
booktitle={Video-Based Surveillance Systems}, |
||||
pages={135--144}, |
||||
year={2002}, |
||||
publisher={Springer} |
||||
} |
||||
|
||||
@inproceedings{Gold2012, |
||||
title={Visual tracking of human visitors under variable-lighting conditions for a responsive audio art installation}, |
||||
author={Godbehere, Andrew B and Matsukawa, Akihiro and Goldberg, Ken}, |
||||
booktitle={American Control Conference (ACC), 2012}, |
||||
pages={4305--4312}, |
||||
year={2012}, |
||||
organization={IEEE} |
||||
} |
@ -0,0 +1,47 @@ |
||||
@article{Benoit2010, |
||||
title={Using human visual system modeling for bio-inspired low level image processing}, |
||||
author={Benoit, Alexandre and Caplier, Alice and Durette, Barth{\'e}l{\'e}my and H{\'e}rault, Jeanny}, |
||||
journal={Computer vision and Image understanding}, |
||||
volume={114}, |
||||
number={7}, |
||||
pages={758--773}, |
||||
year={2010}, |
||||
publisher={Elsevier} |
||||
} |
||||
|
||||
@inproceedings{Strat2013, |
||||
title={Retina enhanced SIFT descriptors for video indexing}, |
||||
author={Strat, Sabin Tiberius and Benoit, Alexandre and Lambert, Patrick}, |
||||
booktitle={Content-Based Multimedia Indexing (CBMI), 2013 11th International Workshop on}, |
||||
pages={201--206}, |
||||
year={2013}, |
||||
organization={IEEE} |
||||
} |
||||
|
||||
@book{Herault2010, |
||||
title={Vision: Images, Signals and Neural Networks-Models of Neural Processing in Visual Perception}, |
||||
author={Jeanny, Herault}, |
||||
year={2010}, |
||||
publisher={World Scientific} |
||||
} |
||||
|
||||
@inproceedings{Chaix2007, |
||||
title={Efficient demosaicing through recursive filtering}, |
||||
author={De Lavar{\`e}ne, Brice Chaix and Alleysson, David and Durette, Barth{\'e}l{\'e}my and H{\'e}rault, Jeanny}, |
||||
booktitle={Image Processing, 2007. ICIP 2007. IEEE International Conference on}, |
||||
volume={2}, |
||||
pages={II--189}, |
||||
year={2007}, |
||||
organization={IEEE} |
||||
} |
||||
|
||||
@article{Meylan2007, |
||||
title={Model of retinal local adaptation for the tone mapping of color filter array images}, |
||||
author={Meylan, Laurence and Alleysson, David and S{\"u}sstrunk, Sabine}, |
||||
journal={JOSA A}, |
||||
volume={24}, |
||||
number={9}, |
||||
pages={2807--2816}, |
||||
year={2007}, |
||||
publisher={Optical Society of America} |
||||
} |
Before Width: | Height: | Size: 13 KiB After Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 22 KiB After Width: | Height: | Size: 22 KiB |
Before Width: | Height: | Size: 19 KiB After Width: | Height: | Size: 19 KiB |
@ -0,0 +1,223 @@ |
||||
Retina : a Bio mimetic human retina model {#bioinspired_retina} |
||||
========================================= |
||||
|
||||
Retina |
||||
------ |
||||
|
||||
**Note** : do not forget that the retina model is included in the following namespace : |
||||
*cv::bioinspired*. |
||||
|
||||
### Introduction |
||||
|
||||
Class which provides the main controls to the Gipsa/Listic labs human retina model. This is a non |
||||
separable spatio-temporal filter modelling the two main retina information channels : |
||||
|
||||
- foveal vision for detailled color vision : the parvocellular pathway. |
||||
- peripheral vision for sensitive transient signals detection (motion and events) : the |
||||
magnocellular pathway. |
||||
|
||||
From a general point of view, this filter whitens the image spectrum and corrects luminance thanks |
||||
to local adaptation. An other important property is its hability to filter out spatio-temporal noise |
||||
while enhancing details. This model originates from Jeanny Herault work @cite Herault2010. It has been |
||||
involved in Alexandre Benoit phd and his current research @cite Benoit2010, @cite Strat2013 (he |
||||
currently maintains this module within OpenCV). It includes the work of other Jeanny's phd student |
||||
such as @cite Chaix2007 and the log polar transformations of Barthelemy Durette described in Jeanny's |
||||
book. |
||||
|
||||
**NOTES :** |
||||
|
||||
- For ease of use in computer vision applications, the two retina channels are applied |
||||
homogeneously on all the input images. This does not follow the real retina topology but this |
||||
can still be done using the log sampling capabilities proposed within the class. |
||||
- Extend the retina description and code use in the tutorial/contrib section for complementary |
||||
explanations. |
||||
|
||||
### Preliminary illustration |
||||
|
||||
As a preliminary presentation, let's start with a visual example. We propose to apply the filter on |
||||
a low quality color jpeg image with backlight problems. Here is the considered input... *"Well, my |
||||
eyes were able to see more that this strange black shadow..."* |
||||
|
||||
 |
||||
|
||||
Below, the retina foveal model applied on the entire image with default parameters. Here contours |
||||
are enforced, halo effects are voluntary visible with this configuration. See parameters discussion |
||||
below and increase horizontalCellsGain near 1 to remove them. |
||||
|
||||
 |
||||
|
||||
Below, a second retina foveal model output applied on the entire image with a parameters setup |
||||
focused on naturalness perception. *"Hey, i now recognize my cat, looking at the mountains at the |
||||
end of the day !"*. Here contours are enforced, luminance is corrected but halos are avoided with |
||||
this configuration. The backlight effect is corrected and highlight details are still preserved. |
||||
Then, even on a low quality jpeg image, if some luminance information remains, the retina is able to |
||||
reconstruct a proper visual signal. Such configuration is also usefull for High Dynamic Range |
||||
(*HDR*) images compression to 8bit images as discussed in @cite Benoit2010 and in the demonstration |
||||
codes discussed below. As shown at the end of the page, parameters change from defaults are : |
||||
|
||||
- horizontalCellsGain=0.3 |
||||
- photoreceptorsLocalAdaptationSensitivity=ganglioncellsSensitivity=0.89. |
||||
|
||||
 |
||||
|
||||
As observed in this preliminary demo, the retina can be settled up with various parameters, by |
||||
default, as shown on the figure above, the retina strongly reduces mean luminance energy and |
||||
enforces all details of the visual scene. Luminance energy and halo effects can be modulated |
||||
(exagerated to cancelled as shown on the two examples). In order to use your own parameters, you can |
||||
use at least one time the *write(String fs)* method which will write a proper XML file with all |
||||
default parameters. Then, tweak it on your own and reload them at any time using method |
||||
*setup(String fs)*. These methods update a *Retina::RetinaParameters* member structure that is |
||||
described hereafter. XML parameters file samples are shown at the end of the page. |
||||
|
||||
Here is an overview of the abstract Retina interface, allocate one instance with the *createRetina* |
||||
functions.: |
||||
|
||||
namespace cv{namespace bioinspired{ |
||||
|
||||
class Retina : public Algorithm |
||||
{ |
||||
public: |
||||
// parameters setup instance |
||||
struct RetinaParameters; // this class is detailled later |
||||
|
||||
// main method for input frame processing (all use method, can also perform High Dynamic Range tone mapping) |
||||
void run (InputArray inputImage); |
||||
|
||||
// specific method aiming at correcting luminance only (faster High Dynamic Range tone mapping) |
||||
void applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage) |
||||
|
||||
// output buffers retreival methods |
||||
// -> foveal color vision details channel with luminance and noise correction |
||||
void getParvo (OutputArray retinaOutput_parvo); |
||||
void getParvoRAW (OutputArray retinaOutput_parvo);// retreive original output buffers without any normalisation |
||||
const Mat getParvoRAW () const;// retreive original output buffers without any normalisation |
||||
// -> peripheral monochrome motion and events (transient information) channel |
||||
void getMagno (OutputArray retinaOutput_magno); |
||||
void getMagnoRAW (OutputArray retinaOutput_magno); // retreive original output buffers without any normalisation |
||||
const Mat getMagnoRAW () const;// retreive original output buffers without any normalisation |
||||
|
||||
// reset retina buffers... equivalent to closing your eyes for some seconds |
||||
void clearBuffers (); |
||||
|
||||
// retreive input and output buffers sizes |
||||
Size getInputSize (); |
||||
Size getOutputSize (); |
||||
|
||||
// setup methods with specific parameters specification of global xml config file loading/write |
||||
void setup (String retinaParameterFile="", const bool applyDefaultSetupOnFailure=true); |
||||
void setup (FileStorage &fs, const bool applyDefaultSetupOnFailure=true); |
||||
void setup (RetinaParameters newParameters); |
||||
struct Retina::RetinaParameters getParameters (); |
||||
const String printSetup (); |
||||
virtual void write (String fs) const; |
||||
virtual void write (FileStorage &fs) const; |
||||
void setupOPLandIPLParvoChannel (const bool colorMode=true, const bool normaliseOutput=true, const float photoreceptorsLocalAdaptationSensitivity=0.7, const float photoreceptorsTemporalConstant=0.5, const float photoreceptorsSpatialConstant=0.53, const float horizontalCellsGain=0, const float HcellsTemporalConstant=1, const float HcellsSpatialConstant=7, const float ganglionCellsSensitivity=0.7); |
||||
void setupIPLMagnoChannel (const bool normaliseOutput=true, const float parasolCells_beta=0, const float parasolCells_tau=0, const float parasolCells_k=7, const float amacrinCellsTemporalCutFrequency=1.2, const float V0CompressionParameter=0.95, const float localAdaptintegration_tau=0, const float localAdaptintegration_k=7); |
||||
void setColorSaturation (const bool saturateColors=true, const float colorSaturationValue=4.0); |
||||
void activateMovingContoursProcessing (const bool activate); |
||||
void activateContoursProcessing (const bool activate); |
||||
}; |
||||
|
||||
// Allocators |
||||
cv::Ptr<Retina> createRetina (Size inputSize); |
||||
cv::Ptr<Retina> createRetina (Size inputSize, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0); |
||||
}} // cv and bioinspired namespaces end |
||||
|
||||
### Description |
||||
|
||||
Class which allows the [Gipsa](http://www.gipsa-lab.inpg.fr) (preliminary work) / |
||||
[Listic](http://www.listic.univ-savoie.fr) (code maintainer and user) labs retina model to be used. |
||||
This class allows human retina spatio-temporal image processing to be applied on still images, |
||||
images sequences and video sequences. Briefly, here are the main human retina model properties: |
||||
|
||||
- spectral whithening (mid-frequency details enhancement) |
||||
- high frequency spatio-temporal noise reduction (temporal noise and high frequency spatial noise |
||||
are minimized) |
||||
- low frequency luminance reduction (luminance range compression) : high luminance regions do not |
||||
hide details in darker regions anymore |
||||
- local logarithmic luminance compression allows details to be enhanced even in low light |
||||
conditions |
||||
|
||||
Use : this model can be used basically for spatio-temporal video effects but also in the aim of : |
||||
|
||||
- performing texture analysis with enhanced signal to noise ratio and enhanced details robust |
||||
against input images luminance ranges (check out the parvocellular retina channel output, by |
||||
using the provided **getParvo** methods) |
||||
- performing motion analysis also taking benefit of the previously cited properties (check out the |
||||
magnocellular retina channel output, by using the provided **getMagno** methods) |
||||
- general image/video sequence description using either one or both channels. An example of the |
||||
use of Retina in a Bag of Words approach is given in @cite Strat2013. |
||||
|
||||
Literature |
||||
---------- |
||||
|
||||
For more information, refer to the following papers : |
||||
|
||||
- Model description : |
||||
|
||||
[Benoit2010] Benoit A., Caplier A., Durette B., Herault, J., "Using Human Visual System Modeling For Bio-Inspired Low Level Image Processing", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773. DOI <http://dx.doi.org/10.1016/j.cviu.2010.01.011> |
||||
|
||||
- Model use in a Bag of Words approach : |
||||
|
||||
[Strat2013] Strat S., Benoit A., Lambert P., "Retina enhanced SIFT descriptors for video indexing", CBMI2013, Veszprém, Hungary, 2013. |
||||
|
||||
- Please have a look at the reference work of Jeanny Herault that you can read in his book : |
||||
|
||||
[Herault2010] Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. |
||||
|
||||
This retina filter code includes the research contributions of phd/research collegues from which |
||||
code has been redrawn by the author : |
||||
|
||||
- take a look at the *retinacolor.hpp* module to discover Brice Chaix de Lavarene phD color |
||||
mosaicing/demosaicing and his reference paper: |
||||
|
||||
[Chaix2007] B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007 |
||||
|
||||
- take a look at *imagelogpolprojection.hpp* to discover retina spatial log sampling which |
||||
originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is |
||||
also proposed and originates from Jeanny's discussions. More informations in the above cited |
||||
Jeanny Heraults's book. |
||||
|
||||
- Meylan&al work on HDR tone mapping that is implemented as a specific method within the model : |
||||
|
||||
[Meylan2007] L. Meylan , D. Alleysson, S. Susstrunk, "A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images", Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816 |
||||
|
||||
Demos and experiments ! |
||||
----------------------- |
||||
|
||||
**NOTE : Complementary to the following examples, have a look at the Retina tutorial in the |
||||
tutorial/contrib section for complementary explanations.** |
||||
|
||||
Take a look at the provided C++ examples provided with OpenCV : |
||||
|
||||
- **samples/cpp/retinademo.cpp** shows how to use the retina module for details enhancement (Parvo channel output) and transient maps observation (Magno channel output). You can play with images, video sequences and webcam video. |
||||
Typical uses are (provided your OpenCV installation is situated in folder |
||||
*OpenCVReleaseFolder*) |
||||
|
||||
- image processing : **OpenCVReleaseFolder/bin/retinademo -image myPicture.jpg** |
||||
- video processing : **OpenCVReleaseFolder/bin/retinademo -video myMovie.avi** |
||||
- webcam processing: **OpenCVReleaseFolder/bin/retinademo -video** |
||||
|
||||
**Note :** This demo generates the file *RetinaDefaultParameters.xml* which contains the |
||||
default parameters of the retina. Then, rename this as *RetinaSpecificParameters.xml*, adjust |
||||
the parameters the way you want and reload the program to check the effect. |
||||
|
||||
- **samples/cpp/OpenEXRimages\_HDR\_Retina\_toneMapping.cpp** shows how to use the retina to |
||||
perform High Dynamic Range (HDR) luminance compression |
||||
|
||||
Then, take a HDR image using bracketing with your camera and generate an OpenEXR image and |
||||
then process it using the demo. |
||||
|
||||
Typical use, supposing that you have the OpenEXR image such as *memorial.exr* (present in the |
||||
samples/cpp/ folder) |
||||
|
||||
- **OpenCVReleaseFolder/bin/OpenEXRimages\_HDR\_Retina\_toneMapping memorial.exr [optional: |
||||
'fast']** |
||||
|
||||
Note that some sliders are made available to allow you to play with luminance compression. |
||||
|
||||
If not using the 'fast' option, then, tone mapping is performed using the full retina model |
||||
@cite Benoit2010. It includes spectral whitening that allows luminance energy to be reduced. |
||||
When using the 'fast' option, then, a simpler method is used, it is an adaptation of the |
||||
algorithm presented in @cite Meylan2007. This method gives also good results and is faster to |
||||
process but it sometimes requires some more parameters adjustement. |
@ -1,6 +1,22 @@ |
||||
/**
|
||||
@defgroup cvv GUI for Interactive Visual Debugging of Computer Vision Programs |
||||
|
||||
Namespace for all functions is **cvv**, i.e. *cvv::showImage()*. |
||||
|
||||
Compilation: |
||||
|
||||
- For development, i.e. for cvv GUI to show up, compile your code using cvv with |
||||
*g++ -DCVVISUAL_DEBUGMODE*. |
||||
- For release, i.e. cvv calls doing nothing, compile your code without above flag. |
||||
|
||||
See cvv tutorial for a commented example application using cvv. |
||||
|
||||
*/ |
||||
|
||||
#include <opencv2/cvv/call_meta_data.hpp> |
||||
#include <opencv2/cvv/debug_mode.hpp> |
||||
#include <opencv2/cvv/dmatch.hpp> |
||||
#include <opencv2/cvv/filter.hpp> |
||||
#include <opencv2/cvv/final_show.hpp> |
||||
#include <opencv2/cvv/show_image.hpp> |
||||
|
||||
|
@ -0,0 +1,75 @@ |
||||
Face module changelog {#face_changelog} |
||||
===================== |
||||
|
||||
Release 0.05 |
||||
------------ |
||||
|
||||
This library is now included in the official OpenCV distribution (from 2.4 on). The |
||||
cv::FaceRecognizer is now an Algorithm, which better fits into the overall OpenCV API. |
||||
|
||||
To reduce the confusion on user side and minimize my work, libfacerec and OpenCV have been |
||||
synchronized and are now based on the same interfaces and implementation. |
||||
|
||||
The library now has an extensive documentation: |
||||
|
||||
- The API is explained in detail and with a lot of code examples. |
||||
- The face recognition guide I had written for Python and GNU Octave/MATLAB has been adapted to |
||||
the new OpenCV C++ cv::FaceRecognizer. |
||||
- A tutorial for gender classification with Fisherfaces. |
||||
- A tutorial for face recognition in videos (e.g. webcam). |
||||
|
||||
### Release highlights |
||||
|
||||
- There are no single highlights to pick from, this release is a highlight itself. |
||||
|
||||
Release 0.04 |
||||
------------ |
||||
|
||||
This version is fully Windows-compatible and works with OpenCV 2.3.1. Several bugfixes, but none |
||||
influenced the recognition rate. |
||||
|
||||
### Release highlights |
||||
|
||||
- A whole lot of exceptions with meaningful error messages. |
||||
- A tutorial for Windows users: |
||||
[<http://bytefish.de/blog/opencv_visual_studio_and_libfacerec>](http://bytefish.de/blog/opencv_visual_studio_and_libfacerec) |
||||
|
||||
Release 0.03 |
||||
------------ |
||||
|
||||
Reworked the library to provide separate implementations in cpp files, because it's the preferred |
||||
way of contributing OpenCV libraries. This means the library is not header-only anymore. Slight API |
||||
changes were done, please see the documentation for details. |
||||
|
||||
### Release highlights |
||||
|
||||
- New Unit Tests (for LBP Histograms) make the library more robust. |
||||
- Added more documentation. |
||||
|
||||
Release 0.02 |
||||
------------ |
||||
|
||||
Reworked the library to provide separate implementations in cpp files, because it's the preferred |
||||
way of contributing OpenCV libraries. This means the library is not header-only anymore. Slight API |
||||
changes were done, please see the documentation for details. |
||||
|
||||
### Release highlights |
||||
|
||||
- New Unit Tests (for LBP Histograms) make the library more robust. |
||||
- Added a documentation and changelog in reStructuredText. |
||||
|
||||
Release 0.01 |
||||
------------ |
||||
|
||||
Initial release as header-only library. |
||||
|
||||
### Release highlights |
||||
|
||||
- Colormaps for OpenCV to enhance the visualization. |
||||
- Face Recognition algorithms implemented: |
||||
- Eigenfaces @cite TP91 |
||||
- Fisherfaces @cite BHK97 |
||||
- Local Binary Patterns Histograms @cite AHP04 |
||||
- Added persistence facilities to store the models with a common API. |
||||
- Unit Tests (using [gtest](http://code.google.com/p/googletest/)). |
||||
- Providing a CMakeLists.txt to enable easy cross-platform building. |
@ -0,0 +1,160 @@ |
||||
@incollection{AHP04, |
||||
title={Face recognition with local binary patterns}, |
||||
author={Ahonen, Timo and Hadid, Abdenour and Pietik{\"a}inen, Matti}, |
||||
booktitle={Computer vision-eccv 2004}, |
||||
pages={469--481}, |
||||
year={2004}, |
||||
publisher={Springer} |
||||
} |
||||
|
||||
@article{BHK97, |
||||
title={Eigenfaces vs. fisherfaces: Recognition using class specific linear projection}, |
||||
author={Belhumeur, Peter N. and Hespanha, Jo{\~a}o P and Kriegman, David}, |
||||
journal={Pattern Analysis and Machine Intelligence, IEEE Transactions on}, |
||||
volume={19}, |
||||
number={7}, |
||||
pages={711--720}, |
||||
year={1997}, |
||||
publisher={IEEE} |
||||
} |
||||
|
||||
@inproceedings{Bru92, |
||||
title={Face recognition through geometrical features}, |
||||
author={Brunelli, Roberto and Poggio, Tomaso}, |
||||
booktitle={Computer Vision—ECCV'92}, |
||||
pages={792--800}, |
||||
year={1992}, |
||||
organization={Springer} |
||||
} |
||||
|
||||
@book{Duda01, |
||||
title={Pattern classification}, |
||||
author={Duda, Richard O and Hart, Peter E and Stork, David G}, |
||||
year={2012}, |
||||
publisher={John Wiley \& Sons} |
||||
} |
||||
|
||||
@article{Fisher36, |
||||
title={The use of multiple measurements in taxonomic problems}, |
||||
author={Fisher, Ronald A}, |
||||
journal={Annals of eugenics}, |
||||
volume={7}, |
||||
number={2}, |
||||
pages={179--188}, |
||||
year={1936}, |
||||
publisher={Wiley Online Library} |
||||
} |
||||
|
||||
@article{GBK01, |
||||
title={From few to many: Illumination cone models for face recognition under variable lighting and pose}, |
||||
author={Georghiades, Athinodoros S. and Belhumeur, Peter N. and Kriegman, David}, |
||||
journal={Pattern Analysis and Machine Intelligence, IEEE Transactions on}, |
||||
volume={23}, |
||||
number={6}, |
||||
pages={643--660}, |
||||
year={2001}, |
||||
publisher={IEEE} |
||||
} |
||||
|
||||
@article{Kanade73, |
||||
title={Picture processing system by computer complex and recognition of human faces}, |
||||
author={Kanade, Takeo}, |
||||
year={1974} |
||||
} |
||||
|
||||
@article{KM01, |
||||
title={Pca versus lda}, |
||||
author={Mart{\'\i}nez, Aleix M and Kak, Avinash C}, |
||||
journal={Pattern Analysis and Machine Intelligence, IEEE Transactions on}, |
||||
volume={23}, |
||||
number={2}, |
||||
pages={228--233}, |
||||
year={2001}, |
||||
publisher={IEEE} |
||||
} |
||||
|
||||
@article{Lee05, |
||||
title={Acquiring linear subspaces for face recognition under variable lighting}, |
||||
author={Lee, Kuang-Chih and Ho, Jeffrey and Kriegman, David}, |
||||
journal={Pattern Analysis and Machine Intelligence, IEEE Transactions on}, |
||||
volume={27}, |
||||
number={5}, |
||||
pages={684--698}, |
||||
year={2005}, |
||||
publisher={IEEE} |
||||
} |
||||
|
||||
@incollection{Messer06, |
||||
title={Performance characterisation of face recognition algorithms and their sensitivity to severe illumination changes}, |
||||
author={Messer, Kieron and Kittler, Josef and Short, James and Heusch, Guillaume and Cardinaux, Fabien and Marcel, Sebastien and Rodriguez, Yann and Shan, Shiguang and Su, Yu and Gao, Wen and others}, |
||||
booktitle={Advances in Biometrics}, |
||||
pages={1--11}, |
||||
year={2005}, |
||||
publisher={Springer} |
||||
} |
||||
|
||||
@article{RJ91, |
||||
title={Small sample size effects in statistical pattern recognition: Recommendations for practitioners}, |
||||
author={Raudys, Sarunas J and Jain, Anil K.}, |
||||
journal={IEEE Transactions on pattern analysis and machine intelligence}, |
||||
volume={13}, |
||||
number={3}, |
||||
pages={252--264}, |
||||
year={1991}, |
||||
publisher={IEEE Computer Society} |
||||
} |
||||
|
||||
@article{Tan10, |
||||
title={Enhanced local texture feature sets for face recognition under difficult lighting conditions}, |
||||
author={Tan, Xiaoyang and Triggs, Bill}, |
||||
journal={Image Processing, IEEE Transactions on}, |
||||
volume={19}, |
||||
number={6}, |
||||
pages={1635--1650}, |
||||
year={2010}, |
||||
publisher={IEEE} |
||||
} |
||||
|
||||
@article{TP91, |
||||
title={Eigenfaces for recognition}, |
||||
author={Turk, Matthew and Pentland, Alex}, |
||||
journal={Journal of cognitive neuroscience}, |
||||
volume={3}, |
||||
number={1}, |
||||
pages={71--86}, |
||||
year={1991}, |
||||
publisher={MIT Press} |
||||
} |
||||
|
||||
@article{Tu06, |
||||
title={Newborns' face recognition: Role of inner and outer facial features}, |
||||
author={Turati, Chiara and Macchi Cassia, Viola and Simion, Francesca and Leo, Irene}, |
||||
journal={Child development}, |
||||
volume={77}, |
||||
number={2}, |
||||
pages={297--311}, |
||||
year={2006}, |
||||
publisher={Wiley Online Library} |
||||
} |
||||
|
||||
@article{Wiskott97, |
||||
title={Face recognition by elastic bunch graph matching}, |
||||
author={Wiskott, Laurenz and Fellous, J-M and Kuiger, N and Von Der Malsburg, Christoph}, |
||||
journal={Pattern Analysis and Machine Intelligence, IEEE Transactions on}, |
||||
volume={19}, |
||||
number={7}, |
||||
pages={775--779}, |
||||
year={1997}, |
||||
publisher={IEEE} |
||||
} |
||||
|
||||
@article{Zhao03, |
||||
title={Face recognition: A literature survey}, |
||||
author={Zhao, Wenyi and Chellappa, Rama and Phillips, P Jonathon and Rosenfeld, Azriel}, |
||||
journal={Acm Computing Surveys (CSUR)}, |
||||
volume={35}, |
||||
number={4}, |
||||
pages={399--458}, |
||||
year={2003}, |
||||
publisher={ACM} |
||||
} |
Before Width: | Height: | Size: 33 KiB After Width: | Height: | Size: 33 KiB |
Before Width: | Height: | Size: 171 KiB After Width: | Height: | Size: 171 KiB |
Before Width: | Height: | Size: 108 KiB After Width: | Height: | Size: 108 KiB |
Before Width: | Height: | Size: 111 KiB After Width: | Height: | Size: 111 KiB |
Before Width: | Height: | Size: 281 KiB After Width: | Height: | Size: 281 KiB |
Before Width: | Height: | Size: 15 KiB After Width: | Height: | Size: 15 KiB |
Before Width: | Height: | Size: 83 KiB After Width: | Height: | Size: 83 KiB |
Before Width: | Height: | Size: 18 KiB After Width: | Height: | Size: 18 KiB |
Before Width: | Height: | Size: 290 KiB After Width: | Height: | Size: 290 KiB |
Before Width: | Height: | Size: 5.4 KiB After Width: | Height: | Size: 5.4 KiB |
Before Width: | Height: | Size: 6.2 KiB After Width: | Height: | Size: 6.2 KiB |
Before Width: | Height: | Size: 1.8 KiB After Width: | Height: | Size: 1.8 KiB |
Before Width: | Height: | Size: 7.1 KiB After Width: | Height: | Size: 7.1 KiB |
Before Width: | Height: | Size: 92 KiB After Width: | Height: | Size: 92 KiB |
Before Width: | Height: | Size: 36 KiB After Width: | Height: | Size: 36 KiB |
Before Width: | Height: | Size: 10 KiB After Width: | Height: | Size: 10 KiB |
Before Width: | Height: | Size: 9.9 KiB After Width: | Height: | Size: 9.9 KiB |