Modified Copyrights Moved plantuml source files under doc disabled tests Added include of precomp.hpppull/1/head
parent
e3aa8bf98e
commit
9e30b50d26
48 changed files with 9191 additions and 0 deletions
@ -0,0 +1,2 @@ |
||||
set(the_description "Tracking API") |
||||
ocv_define_module(tracking opencv_imgproc) |
@ -0,0 +1,264 @@ |
||||
Common Interfaces of Tracker |
||||
============================ |
||||
|
||||
.. highlight:: cpp |
||||
|
||||
|
||||
Tracker : Algorithm |
||||
------------------- |
||||
|
||||
.. ocv:class:: Tracker |
||||
|
||||
Base abstract class for the long-term tracker:: |
||||
|
||||
class CV_EXPORTS_W Tracker : public virtual Algorithm |
||||
{ |
||||
virtual ~Tracker(); |
||||
|
||||
bool init( const Mat& image, const Rect& boundingBox ); |
||||
|
||||
bool update( const Mat& image, Rect& boundingBox ); |
||||
|
||||
static Ptr<Tracker> create( const String& trackerType ); |
||||
|
||||
}; |
||||
|
||||
Tracker::init |
||||
------------- |
||||
|
||||
Initialize the tracker with a know bounding box that surrounding the target |
||||
|
||||
.. ocv:function:: bool Tracker::init( const Mat& image, const Rect& boundingBox ) |
||||
|
||||
:param image: The initial frame |
||||
|
||||
:param boundingBox: The initial boundig box |
||||
|
||||
|
||||
Tracker::update |
||||
--------------- |
||||
|
||||
Update the tracker, find the new most likely bounding box for the target |
||||
|
||||
.. ocv:function:: bool Tracker::update( const Mat& image, Rect& boundingBox ) |
||||
|
||||
:param image: The current frame |
||||
|
||||
:param boundingBox: The boundig box that represent the new target location |
||||
|
||||
|
||||
Tracker::create |
||||
--------------- |
||||
|
||||
Creates a tracker by its name. |
||||
|
||||
.. ocv:function:: static Ptr<Tracker> Tracker::create( const String& trackerType ) |
||||
|
||||
:param trackerType: Tracker type |
||||
|
||||
The following detector types are supported: |
||||
|
||||
* ``"MIL"`` -- :ocv:class:`TrackerMIL` |
||||
|
||||
* ``"BOOSTING"`` -- :ocv:class:`TrackerBoosting` |
||||
|
||||
Creating Own Tracker |
||||
-------------------- |
||||
|
||||
If you want create a new tracker, you should follow some simple rules. |
||||
|
||||
First, your tracker should be inherit from :ocv:class:`Tracker`, so you must implement two method: |
||||
|
||||
* Tracker: initImpl, it should be called once in the first frame, here you should initialize all structures. The second argument is the initial bounding box of the target. |
||||
|
||||
* Tracker:updateImpl, it should be called at the begin of in loop through video frames. Here you should overwrite the bounding box with new location. |
||||
|
||||
Example of creating specialized Tracker ``TrackerMIL`` : :: |
||||
|
||||
class CV_EXPORTS_W TrackerMIL : public Tracker |
||||
{ |
||||
public: |
||||
TrackerMIL( const TrackerMIL::Params ¶meters = TrackerMIL::Params() ); |
||||
virtual ~TrackerMIL(); |
||||
... |
||||
|
||||
protected: |
||||
bool initImpl( const Mat& image, const Rect& boundingBox ); |
||||
bool updateImpl( const Mat& image, Rect& boundingBox ); |
||||
... |
||||
}; |
||||
|
||||
|
||||
Every tracker has three component :ocv:class:`TrackerSampler`, :ocv:class:`TrackerFeatureSet` and :ocv:class:`TrackerModel`. |
||||
The first two are instantiated from Tracker base class, instead the last component is abstract, so you must implement your TrackerModel. |
||||
|
||||
Finally add your tracker in the file tracking_init.cpp |
||||
|
||||
TrackerSampler |
||||
.............. |
||||
|
||||
TrackerSampler is already instantiated, but you should define the sampling algorithm and add the classes (or single class) to TrackerSampler. |
||||
You can choose one of the ready implementation as TrackerSamplerCSC or you can implement your sampling method, in this case |
||||
the class must inherit :ocv:class:`TrackerSamplerAlgorithm`. Fill the samplingImpl method that writes the result in "sample" output argument. |
||||
|
||||
Example of creating specialized TrackerSamplerAlgorithm ``TrackerSamplerCSC`` : :: |
||||
|
||||
class CV_EXPORTS_W TrackerSamplerCSC : public TrackerSamplerAlgorithm |
||||
{ |
||||
public: |
||||
TrackerSamplerCSC( const TrackerSamplerCSC::Params ¶meters = TrackerSamplerCSC::Params() ); |
||||
~TrackerSamplerCSC(); |
||||
... |
||||
|
||||
protected: |
||||
bool samplingImpl( const Mat& image, Rect boundingBox, std::vector<Mat>& sample ); |
||||
... |
||||
|
||||
}; |
||||
|
||||
Example of adding TrackerSamplerAlgorithm to TrackerSampler : :: |
||||
|
||||
//sampler is the TrackerSampler |
||||
Ptr<TrackerSamplerAlgorithm> CSCSampler = new TrackerSamplerCSC( CSCparameters ); |
||||
if( !sampler->addTrackerSamplerAlgorithm( CSCSampler ) ) |
||||
return false; |
||||
|
||||
//or add CSC sampler with default parameters |
||||
//sampler->addTrackerSamplerAlgorithm( "CSC" ); |
||||
|
||||
.. seealso:: |
||||
|
||||
:ocv:class:`TrackerSamplerCSC`, :ocv:class:`TrackerSamplerAlgorithm` |
||||
|
||||
|
||||
TrackerFeatureSet |
||||
................. |
||||
|
||||
TrackerFeatureSet is already instantiated (as first) , but you should define what kinds of features you'll use in your tracker. |
||||
You can use multiple feature types, so you can add a ready implementation as :ocv:class:`TrackerFeatureHAAR` in your TrackerFeatureSet or develop your own implementation. |
||||
In this case, in the computeImpl method put the code that extract the features and |
||||
in the selection method optionally put the code for the refinement and selection of the features. |
||||
|
||||
Example of creating specialized TrackerFeature ``TrackerFeatureHAAR`` : :: |
||||
|
||||
class CV_EXPORTS_W TrackerFeatureHAAR : public TrackerFeature |
||||
{ |
||||
public: |
||||
TrackerFeatureHAAR( const TrackerFeatureHAAR::Params ¶meters = TrackerFeatureHAAR::Params() ); |
||||
~TrackerFeatureHAAR(); |
||||
void selection( Mat& response, int npoints ); |
||||
... |
||||
|
||||
protected: |
||||
bool computeImpl( const std::vector<Mat>& images, Mat& response ); |
||||
... |
||||
|
||||
}; |
||||
|
||||
Example of adding TrackerFeature to TrackerFeatureSet : :: |
||||
|
||||
//featureSet is the TrackerFeatureSet |
||||
Ptr<TrackerFeature> trackerFeature = new TrackerFeatureHAAR( HAARparameters ); |
||||
featureSet->addTrackerFeature( trackerFeature ); |
||||
|
||||
.. seealso:: |
||||
|
||||
:ocv:class:`TrackerFeatureHAAR`, :ocv:class:`TrackerFeatureSet` |
||||
|
||||
TrackerModel |
||||
............ |
||||
|
||||
TrackerModel is abstract, so in your implementation you must develop your TrackerModel that inherit from :ocv:class:`TrackerModel`. |
||||
Fill the method for the estimation of the state "modelEstimationImpl", that estimates the most likely target location, |
||||
see [AAM]_ table I (ME) for further information. Fill "modelUpdateImpl" in order to update the model, see [AAM]_ table I (MU). |
||||
In this class you can use the :c:type:`ConfidenceMap` and :c:type:`Trajectory` to storing the model. The first represents the model on the all |
||||
possible candidate states and the second represents the list of all estimated states. |
||||
|
||||
Example of creating specialized TrackerModel ``TrackerMILModel`` : :: |
||||
|
||||
class TrackerMILModel : public TrackerModel |
||||
{ |
||||
public: |
||||
TrackerMILModel( const Rect& boundingBox ); |
||||
~TrackerMILModel(); |
||||
... |
||||
|
||||
protected: |
||||
void modelEstimationImpl( const std::vector<Mat>& responses ); |
||||
void modelUpdateImpl(); |
||||
... |
||||
|
||||
}; |
||||
|
||||
And add it in your Tracker : :: |
||||
|
||||
bool TrackerMIL::initImpl( const Mat& image, const Rect& boundingBox ) |
||||
{ |
||||
... |
||||
//model is the general TrackerModel field od the general Tracker |
||||
model = new TrackerMILModel( boundingBox ); |
||||
... |
||||
} |
||||
|
||||
|
||||
In the last step you should define the TrackerStateEstimator based on your implementation or you can use one of ready class as :ocv:class:`TrackerStateEstimatorMILBoosting`. |
||||
It represent the statistical part of the model that estimates the most likely target state. |
||||
|
||||
Example of creating specialized TrackerStateEstimator ``TrackerStateEstimatorMILBoosting`` : :: |
||||
|
||||
class CV_EXPORTS_W TrackerStateEstimatorMILBoosting : public TrackerStateEstimator |
||||
{ |
||||
class TrackerMILTargetState : public TrackerTargetState |
||||
{ |
||||
... |
||||
}; |
||||
|
||||
public: |
||||
TrackerStateEstimatorMILBoosting( int nFeatures = 250 ); |
||||
~TrackerStateEstimatorMILBoosting(); |
||||
... |
||||
|
||||
protected: |
||||
Ptr<TrackerTargetState> estimateImpl( const std::vector<ConfidenceMap>& confidenceMaps ); |
||||
void updateImpl( std::vector<ConfidenceMap>& confidenceMaps ); |
||||
... |
||||
|
||||
}; |
||||
|
||||
And add it in your TrackerModel : :: |
||||
|
||||
//model is the TrackerModel of your Tracker |
||||
Ptr<TrackerStateEstimatorMILBoosting> stateEstimator = new TrackerStateEstimatorMILBoosting( params.featureSetNumFeatures ); |
||||
model->setTrackerStateEstimator( stateEstimator ); |
||||
|
||||
.. seealso:: |
||||
|
||||
:ocv:class:`TrackerModel`, :ocv:class:`TrackerStateEstimatorMILBoosting`, :ocv:class:`TrackerTargetState` |
||||
|
||||
|
||||
During this step, you should define your TrackerTargetState based on your implementation. :ocv:class:`TrackerTargetState` base class has only the bounding box (upper-left position, width and height), you can |
||||
enrich it adding scale factor, target rotation, etc. |
||||
|
||||
Example of creating specialized TrackerTargetState ``TrackerMILTargetState`` : :: |
||||
|
||||
class TrackerMILTargetState : public TrackerTargetState |
||||
{ |
||||
public: |
||||
TrackerMILTargetState( const Point2f& position, int targetWidth, int targetHeight, bool foreground, const Mat& features ); |
||||
~TrackerMILTargetState(); |
||||
... |
||||
|
||||
private: |
||||
bool isTarget; |
||||
Mat targetFeatures; |
||||
... |
||||
|
||||
}; |
||||
|
||||
|
||||
Try it |
||||
...... |
||||
|
||||
To try your tracker you can use the demo at https://github.com/lenlen/opencv/blob/tracking_api/samples/cpp/tracker.cpp. |
||||
|
||||
The first argument is the name of the tracker and the second is a video source. |
@ -0,0 +1,343 @@ |
||||
Common Interfaces of TrackerFeatureSet |
||||
====================================== |
||||
|
||||
.. highlight:: cpp |
||||
|
||||
|
||||
TrackerFeatureSet |
||||
----------------- |
||||
|
||||
Class that manages the extraction and selection of features |
||||
|
||||
[AAM]_ Feature Extraction and Feature Set Refinement (Feature Processing and Feature Selection). See table I and section III C |
||||
[AMVOT]_ Appearance modelling -> Visual representation (Table II, section 3.1 - 3.2) |
||||
|
||||
.. ocv:class:: TrackerFeatureSet |
||||
|
||||
TrackerFeatureSet class:: |
||||
|
||||
class CV_EXPORTS_W TrackerFeatureSet |
||||
{ |
||||
public: |
||||
|
||||
TrackerFeatureSet(); |
||||
~TrackerFeatureSet(); |
||||
|
||||
void extraction( const std::vector<Mat>& images ); |
||||
void selection(); |
||||
void removeOutliers(); |
||||
|
||||
bool addTrackerFeature( String trackerFeatureType ); |
||||
bool addTrackerFeature( Ptr<TrackerFeature>& feature ); |
||||
|
||||
const std::vector<std::pair<String, Ptr<TrackerFeature> > >& getTrackerFeature() const; |
||||
const std::vector<Mat>& getResponses() const; |
||||
|
||||
}; |
||||
|
||||
|
||||
TrackerFeatureSet is an aggregation of :ocv:class:`TrackerFeature` |
||||
|
||||
.. seealso:: |
||||
|
||||
:ocv:class:`TrackerFeature` |
||||
|
||||
TrackerFeatureSet::extraction |
||||
----------------------------- |
||||
|
||||
Extract features from the images collection |
||||
|
||||
.. ocv:function:: void TrackerFeatureSet::extraction( const std::vector<Mat>& images ) |
||||
|
||||
:param images: The input images |
||||
|
||||
TrackerFeatureSet::selection |
||||
---------------------------- |
||||
|
||||
Identify most effective features for all feature types (optional) |
||||
|
||||
.. ocv:function:: void TrackerFeatureSet::selection() |
||||
|
||||
TrackerFeatureSet::removeOutliers |
||||
--------------------------------- |
||||
|
||||
Remove outliers for all feature types (optional) |
||||
|
||||
.. ocv:function:: void TrackerFeatureSet::removeOutliers() |
||||
|
||||
TrackerFeatureSet::addTrackerFeature |
||||
------------------------------------ |
||||
|
||||
Add TrackerFeature in the collection. Return true if TrackerFeature is added, false otherwise |
||||
|
||||
.. ocv:function:: bool TrackerFeatureSet::addTrackerFeature( String trackerFeatureType ) |
||||
|
||||
:param trackerFeatureType: The TrackerFeature name |
||||
|
||||
.. ocv:function:: bool TrackerFeatureSet::addTrackerFeature( Ptr<TrackerFeature>& feature ) |
||||
|
||||
:param feature: The TrackerFeature class |
||||
|
||||
|
||||
The modes available now: |
||||
|
||||
* ``"HAAR"`` -- Haar Feature-based |
||||
|
||||
The modes available soon: |
||||
|
||||
* ``"HOG"`` -- Histogram of Oriented Gradients features |
||||
|
||||
* ``"LBP"`` -- Local Binary Pattern features |
||||
|
||||
* ``"FEATURE2D"`` -- All types of Feature2D |
||||
|
||||
Example ``TrackerFeatureSet::addTrackerFeature`` : :: |
||||
|
||||
//sample usage: |
||||
|
||||
Ptr<TrackerFeature> trackerFeature = new TrackerFeatureHAAR( HAARparameters ); |
||||
featureSet->addTrackerFeature( trackerFeature ); |
||||
|
||||
//or add CSC sampler with default parameters |
||||
//featureSet->addTrackerFeature( "HAAR" ); |
||||
|
||||
|
||||
.. note:: If you use the second method, you must initialize the TrackerFeature |
||||
|
||||
TrackerFeatureSet::getTrackerFeature |
||||
------------------------------------ |
||||
|
||||
Get the TrackerFeature collection (TrackerFeature name, TrackerFeature pointer) |
||||
|
||||
.. ocv:function:: const std::vector<std::pair<String, Ptr<TrackerFeature> > >& TrackerFeatureSet::getTrackerFeature() const |
||||
|
||||
TrackerFeatureSet::getResponses |
||||
------------------------------- |
||||
|
||||
Get the responses |
||||
|
||||
.. ocv:function:: const std::vector<Mat>& TrackerFeatureSet::getResponses() const |
||||
|
||||
.. note:: Be sure to call extraction before getResponses |
||||
|
||||
Example ``TrackerFeatureSet::getResponses`` : :: |
||||
|
||||
//get the patches from sampler |
||||
std::vector<Mat> detectSamples = sampler->getSamples(); |
||||
|
||||
if( detectSamples.empty() ) |
||||
return false; |
||||
|
||||
//features extraction |
||||
featureSet->extraction( detectSamples ); |
||||
|
||||
//get responses |
||||
std::vector<Mat> response = featureSet->getResponses(); |
||||
|
||||
TrackerFeature |
||||
-------------- |
||||
|
||||
Abstract base class for TrackerFeature that represents the feature. |
||||
|
||||
.. ocv:class:: TrackerFeature |
||||
|
||||
TrackerFeature class:: |
||||
|
||||
class CV_EXPORTS_W TrackerFeature |
||||
{ |
||||
public: |
||||
virtual ~TrackerFeature(); |
||||
|
||||
static Ptr<TrackerFeature> create( const String& trackerFeatureType ); |
||||
|
||||
void compute( const std::vector<Mat>& images, Mat& response ); |
||||
|
||||
virtual void selection( Mat& response, int npoints ) = 0; |
||||
|
||||
String getClassName() const; |
||||
}; |
||||
|
||||
TrackerFeature::create |
||||
---------------------- |
||||
|
||||
Create TrackerFeature by tracker feature type |
||||
|
||||
.. ocv:function:: static Ptr<TrackerFeature> TrackerFeature::create( const String& trackerFeatureType ) |
||||
|
||||
:param trackerFeatureType: The TrackerFeature name |
||||
|
||||
The modes available now: |
||||
|
||||
* ``"HAAR"`` -- Haar Feature-based |
||||
|
||||
The modes available soon: |
||||
|
||||
* ``"HOG"`` -- Histogram of Oriented Gradients features |
||||
|
||||
* ``"LBP"`` -- Local Binary Pattern features |
||||
|
||||
* ``"FEATURE2D"`` -- All types of Feature2D |
||||
|
||||
TrackerFeature::compute |
||||
----------------------- |
||||
|
||||
Compute the features in the images collection |
||||
|
||||
.. ocv:function:: void TrackerFeature::compute( const std::vector<Mat>& images, Mat& response ) |
||||
|
||||
:param images: The images |
||||
|
||||
:param response: The output response |
||||
|
||||
TrackerFeature::selection |
||||
------------------------- |
||||
|
||||
Identify most effective features |
||||
|
||||
.. ocv:function:: void TrackerFeature::selection( Mat& response, int npoints ) |
||||
|
||||
:param response: Collection of response for the specific TrackerFeature |
||||
|
||||
:param npoints: Max number of features |
||||
|
||||
.. note:: This method modifies the response parameter |
||||
|
||||
TrackerFeature::getClassName |
||||
---------------------------- |
||||
|
||||
Get the name of the specific TrackerFeature |
||||
|
||||
.. ocv:function:: String TrackerFeature::getClassName() const |
||||
|
||||
Specialized TrackerFeature |
||||
========================== |
||||
|
||||
In [AAM]_ table I and section III C are described the most known features type. At moment only :ocv:class:`TrackerFeatureHAAR` is implemented. |
||||
|
||||
TrackerFeatureHAAR : TrackerFeature |
||||
----------------------------------- |
||||
|
||||
TrackerFeature based on HAAR features, used by TrackerMIL and many others algorithms |
||||
|
||||
.. ocv:class:: TrackerFeatureHAAR |
||||
|
||||
TrackerFeatureHAAR class:: |
||||
|
||||
class CV_EXPORTS_W TrackerFeatureHAAR : TrackerFeature |
||||
{ |
||||
public: |
||||
|
||||
TrackerFeatureHAAR( const TrackerFeatureHAAR::Params ¶meters = TrackerFeatureHAAR::Params() ); |
||||
~TrackerFeatureHAAR(); |
||||
|
||||
void selection( Mat& response, int npoints ); |
||||
bool extractSelected( const std::vector<int> selFeatures, const std::vector<Mat>& images, Mat& response ); |
||||
std::vector<std::pair<float, float> >& getMeanSigmaPairs(); |
||||
bool swapFeature( int source, int target ); |
||||
bool swapFeature( int id, CvHaarEvaluator::FeatureHaar& feature ); |
||||
CvHaarEvaluator::FeatureHaar& getFeatureAt( int id ); |
||||
}; |
||||
|
||||
.. note:: HAAR features implementation is copied from apps/traincascade and modified according to MIL implementation |
||||
|
||||
TrackerFeatureHAAR::Params |
||||
-------------------------- |
||||
|
||||
.. ocv:struct:: TrackerFeatureHAAR::Params |
||||
|
||||
List of TrackerFeatureHAAR parameters:: |
||||
|
||||
struct CV_EXPORTS Params |
||||
{ |
||||
Params(); |
||||
int numFeatures; // # of rects |
||||
Size rectSize; // rect size |
||||
bool isIntegral; // true if input images are integral, false otherwise |
||||
}; |
||||
|
||||
TrackerFeatureHAAR::TrackerFeatureHAAR |
||||
-------------------------------------- |
||||
|
||||
Constructor |
||||
|
||||
.. ocv:function:: TrackerFeatureHAAR::TrackerFeatureHAAR( const TrackerFeatureHAAR::Params ¶meters = TrackerFeatureHAAR::Params() ) |
||||
|
||||
:param parameters: TrackerFeatureHAAR parameters :ocv:struct:`TrackerFeatureHAAR::Params` |
||||
|
||||
|
||||
TrackerFeatureHAAR::selection |
||||
----------------------------- |
||||
|
||||
Identify most effective features |
||||
|
||||
.. ocv:function:: void TrackerFeatureHAAR::selection( Mat& response, int npoints ) |
||||
|
||||
:param response: Collection of response for the specific TrackerFeature |
||||
|
||||
:param npoints: Max number of features |
||||
|
||||
.. note:: This method modifies the response parameter |
||||
|
||||
TrackerFeatureHAAR::extractSelected |
||||
----------------------------------- |
||||
|
||||
Compute the features only for the selected indices in the images collection |
||||
|
||||
.. ocv:function:: bool TrackerFeatureHAAR::extractSelected( const std::vector<int> selFeatures, const std::vector<Mat>& images, Mat& response ) |
||||
|
||||
:param selFeatures: indices of selected features |
||||
|
||||
:param images: The images |
||||
|
||||
:param response: Collection of response for the specific TrackerFeature |
||||
|
||||
TrackerFeatureHAAR::getMeanSigmaPairs |
||||
------------------------------------- |
||||
|
||||
Get the list of mean/sigma. Return the list of mean/sigma |
||||
|
||||
.. ocv:function:: std::vector<std::pair<float, float> >& TrackerFeatureHAAR::getMeanSigmaPairs() |
||||
|
||||
TrackerFeatureHAAR::swapFeature |
||||
------------------------------- |
||||
|
||||
Swap the feature in position source with the feature in position target |
||||
|
||||
.. ocv:function:: bool TrackerFeatureHAAR::swapFeature( int source, int target ) |
||||
|
||||
:param source: The source position |
||||
|
||||
:param target: The target position |
||||
|
||||
Swap the feature in position id with the feature input |
||||
|
||||
.. ocv:function:: bool TrackerFeatureHAAR::swapFeature( int id, CvHaarEvaluator::FeatureHaar& feature ) |
||||
|
||||
:param id: The position |
||||
|
||||
:param feature: The feature |
||||
|
||||
TrackerFeatureHAAR::getFeatureAt |
||||
-------------------------------- |
||||
|
||||
Get the feature in position id |
||||
|
||||
.. ocv:function:: CvHaarEvaluator::FeatureHaar& TrackerFeatureHAAR::getFeatureAt( int id ) |
||||
|
||||
:param id: The position |
||||
|
||||
|
||||
TrackerFeatureHOG |
||||
----------------- |
||||
|
||||
TODO To be implemented |
||||
|
||||
TrackerFeatureLBP |
||||
----------------- |
||||
|
||||
TODO To be implemented |
||||
|
||||
TrackerFeatureFeature2d |
||||
----------------------- |
||||
|
||||
TODO To be implemented |
@ -0,0 +1,506 @@ |
||||
Common Interfaces of TrackerModel |
||||
================================= |
||||
|
||||
.. highlight:: cpp |
||||
|
||||
ConfidenceMap |
||||
------------- |
||||
|
||||
Represents the model of the target at frame :math:`k` (all states and scores) |
||||
|
||||
[AAM]_ The set of the pair :math:`\langle \hat{x}^{i}_{k}, C^{i}_{k} \rangle` |
||||
|
||||
.. c:type:: ConfidenceMap |
||||
|
||||
ConfidenceMap:: |
||||
|
||||
typedef std::vector<std::pair<Ptr<TrackerTargetState>, float> > ConfidenceMap; |
||||
|
||||
.. seealso:: |
||||
|
||||
:ocv:class:`TrackerTargetState` |
||||
|
||||
Trajectory |
||||
---------- |
||||
|
||||
Represents the estimate states for all frames |
||||
|
||||
[AAM]_ :math:`x_{k}` is the trajectory of the target up to time :math:`k` |
||||
|
||||
.. c:type:: Trajectory |
||||
|
||||
Trajectory:: |
||||
|
||||
typedef std::vector<Ptr<TrackerTargetState> > Trajectory; |
||||
|
||||
.. seealso:: |
||||
|
||||
:ocv:class:`TrackerTargetState` |
||||
|
||||
TrackerTargetState |
||||
------------------ |
||||
|
||||
Abstract base class for TrackerTargetState that represents a possible state of the target. |
||||
|
||||
[AAM]_ :math:`\hat{x}^{i}_{k}` all the states candidates. |
||||
|
||||
Inherits this class with your Target state |
||||
|
||||
.. ocv:class:: TrackerTargetState |
||||
|
||||
TrackerTargetState class:: |
||||
|
||||
class CV_EXPORTS_W TrackerTargetState |
||||
{ |
||||
public: |
||||
virtual ~TrackerTargetState(){}; |
||||
|
||||
Point2f getTargetPosition() const; |
||||
void setTargetPosition( const Point2f& position ); |
||||
|
||||
int getTargetWidth() const; |
||||
void setTargetWidth( int width ); |
||||
|
||||
int getTargetHeight() const; |
||||
void setTargetHeight( int height ); |
||||
|
||||
}; |
||||
|
||||
In own implementation you can add scale variation, width, height, orientation, etc. |
||||
|
||||
|
||||
TrackerStateEstimator |
||||
--------------------- |
||||
|
||||
Abstract base class for TrackerStateEstimator that estimates the most likely target state. |
||||
|
||||
[AAM]_ State estimator |
||||
|
||||
[AMVOT]_ Statistical modeling (Fig. 3), Table III (generative) - IV (discriminative) - V (hybrid) |
||||
|
||||
.. ocv:class:: TrackerStateEstimator |
||||
|
||||
TrackerStateEstimator class:: |
||||
|
||||
class CV_EXPORTS_W TrackerStateEstimator |
||||
{ |
||||
public: |
||||
virtual ~TrackerStateEstimator(); |
||||
|
||||
static Ptr<TrackerStateEstimator> create( const String& trackeStateEstimatorType ); |
||||
|
||||
Ptr<TrackerTargetState> estimate( const std::vector<ConfidenceMap>& confidenceMaps ); |
||||
void update( std::vector<ConfidenceMap>& confidenceMaps ); |
||||
|
||||
String getClassName() const; |
||||
|
||||
}; |
||||
|
||||
TrackerStateEstimator::create |
||||
----------------------------- |
||||
|
||||
Create TrackerStateEstimator by tracker state estimator type |
||||
|
||||
.. ocv:function:: static Ptr<TrackerStateEstimator> TrackerStateEstimator::create( const String& trackeStateEstimatorType ) |
||||
|
||||
:param trackeStateEstimatorType: The TrackerStateEstimator name |
||||
|
||||
The modes available now: |
||||
|
||||
* ``"BOOSTING"`` -- Boosting-based discriminative appearance models. See [AMVOT]_ section 4.4 |
||||
|
||||
The modes available soon: |
||||
|
||||
* ``"SVM"`` -- SVM-based discriminative appearance models. See [AMVOT]_ section 4.5 |
||||
|
||||
TrackerStateEstimator::estimate |
||||
------------------------------- |
||||
|
||||
Estimate the most likely target state, return the estimated state |
||||
|
||||
.. ocv:function:: Ptr<TrackerTargetState> TrackerStateEstimator::estimate( const std::vector<ConfidenceMap>& confidenceMaps ) |
||||
|
||||
:param confidenceMaps: The overall appearance model as a list of :c:type:`ConfidenceMap` |
||||
|
||||
TrackerStateEstimator::update |
||||
----------------------------- |
||||
|
||||
Update the ConfidenceMap with the scores |
||||
|
||||
.. ocv:function:: void TrackerStateEstimator::update( std::vector<ConfidenceMap>& confidenceMaps ) |
||||
|
||||
:param confidenceMaps: The overall appearance model as a list of :c:type:`ConfidenceMap` |
||||
|
||||
TrackerStateEstimator::getClassName |
||||
----------------------------------- |
||||
|
||||
Get the name of the specific TrackerStateEstimator |
||||
|
||||
.. ocv:function:: String TrackerStateEstimator::getClassName() const |
||||
|
||||
TrackerModel |
||||
------------ |
||||
|
||||
Abstract class that represents the model of the target. It must be instantiated by specialized tracker |
||||
|
||||
[AAM]_ Ak |
||||
|
||||
Inherits this with your TrackerModel |
||||
|
||||
.. ocv:class:: TrackerModel |
||||
|
||||
TrackerModel class:: |
||||
|
||||
class CV_EXPORTS_W TrackerModel |
||||
{ |
||||
public: |
||||
|
||||
TrackerModel(); |
||||
virtual ~TrackerModel(); |
||||
|
||||
void modelEstimation( const std::vector<Mat>& responses ); |
||||
void modelUpdate(); |
||||
bool runStateEstimator(); |
||||
|
||||
bool setTrackerStateEstimator( Ptr<TrackerStateEstimator> trackerStateEstimator ); |
||||
void setLastTargetState( const Ptr<TrackerTargetState>& lastTargetState ); |
||||
|
||||
Ptr<TrackerTargetState> getLastTargetState() const; |
||||
const std::vector<ConfidenceMap>& getConfidenceMaps() const; |
||||
const ConfidenceMap& getLastConfidenceMap() const; |
||||
Ptr<TrackerStateEstimator> getTrackerStateEstimator() const; |
||||
}; |
||||
|
||||
TrackerModel::modelEstimation |
||||
----------------------------- |
||||
|
||||
Estimate the most likely target location |
||||
|
||||
[AAM]_ ME, Model Estimation table I |
||||
|
||||
.. ocv:function:: void TrackerModel::modelEstimation( const std::vector<Mat>& responses ) |
||||
|
||||
:param responses: Features extracted from :ocv:class:`TrackerFeatureSet` |
||||
|
||||
|
||||
TrackerModel::modelUpdate |
||||
------------------------- |
||||
|
||||
Update the model |
||||
|
||||
[AAM]_ MU, Model Update table I |
||||
|
||||
.. ocv:function:: void TrackerModel::modelUpdate() |
||||
|
||||
|
||||
TrackerModel::runStateEstimator |
||||
------------------------------- |
||||
|
||||
Run the TrackerStateEstimator, return true if is possible to estimate a new state, false otherwise |
||||
|
||||
.. ocv:function:: bool TrackerModel::runStateEstimator() |
||||
|
||||
TrackerModel::setTrackerStateEstimator |
||||
-------------------------------------- |
||||
|
||||
Set TrackerEstimator, return true if the tracker state estimator is added, false otherwise |
||||
|
||||
.. ocv:function:: bool TrackerModel::setTrackerStateEstimator( Ptr<TrackerStateEstimator> trackerStateEstimator ) |
||||
|
||||
:param trackerStateEstimator: The :ocv:class:`TrackerStateEstimator` |
||||
|
||||
.. note:: You can add only one :ocv:class:`TrackerStateEstimator` |
||||
|
||||
TrackerModel::setLastTargetState |
||||
-------------------------------- |
||||
|
||||
Set the current :ocv:class:`TrackerTargetState` in the :c:type:`Trajectory` |
||||
|
||||
.. ocv:function:: void TrackerModel::setLastTargetState( const Ptr<TrackerTargetState>& lastTargetState ) |
||||
|
||||
:param lastTargetState: The current :ocv:class:`TrackerTargetState` |
||||
|
||||
|
||||
TrackerModel::getLastTargetState |
||||
-------------------------------- |
||||
|
||||
Get the last :ocv:class:`TrackerTargetState` from :c:type:`Trajectory` |
||||
|
||||
.. ocv:function:: Ptr<TrackerTargetState> TrackerModel::getLastTargetState() const |
||||
|
||||
|
||||
TrackerModel::getConfidenceMaps |
||||
------------------------------- |
||||
|
||||
Get the list of the :c:type:`ConfidenceMap` |
||||
|
||||
.. ocv:function:: const std::vector<ConfidenceMap>& TrackerModel::getConfidenceMaps() const |
||||
|
||||
TrackerModel::getLastConfidenceMap |
||||
---------------------------------- |
||||
|
||||
Get the last :c:type:`ConfidenceMap` for the current frame |
||||
|
||||
.. ocv:function:: const ConfidenceMap& TrackerModel::getLastConfidenceMap() const |
||||
|
||||
TrackerModel::getTrackerStateEstimator |
||||
-------------------------------------- |
||||
|
||||
Get the :ocv:class:`TrackerStateEstimator` |
||||
|
||||
.. ocv:function:: Ptr<TrackerStateEstimator> TrackerModel::getTrackerStateEstimator() const |
||||
|
||||
Specialized TrackerStateEstimator |
||||
================================= |
||||
|
||||
In [AMVOT]_ Statistical modeling (Fig. 3), Table III (generative) - IV (discriminative) - V (hybrid) are described the most known statistical model. |
||||
|
||||
At moment :ocv:class:`TrackerStateEstimatorMILBoosting` and :ocv:class:`TrackerStateEstimatorAdaBoosting` are implemented. |
||||
|
||||
TrackerStateEstimatorMILBoosting : TrackerStateEstimator |
||||
-------------------------------------------------------- |
||||
|
||||
TrackerStateEstimator based on Boosting |
||||
|
||||
.. ocv:class:: TrackerStateEstimatorMILBoosting |
||||
|
||||
TrackerStateEstimatorMILBoosting class:: |
||||
|
||||
class CV_EXPORTS_W TrackerStateEstimatorMILBoosting : public TrackerStateEstimator |
||||
{ |
||||
public: |
||||
class TrackerMILTargetState : public TrackerTargetState |
||||
{ |
||||
... |
||||
}; |
||||
TrackerStateEstimatorMILBoosting( int nFeatures = 250 ); |
||||
~TrackerStateEstimatorMILBoosting(); |
||||
|
||||
void setCurrentConfidenceMap( ConfidenceMap& confidenceMap ); |
||||
}; |
||||
|
||||
TrackerMILTargetState : TrackerTargetState |
||||
------------------------------------------ |
||||
|
||||
Implementation of the target state for TrackerMILTargetState |
||||
|
||||
.. ocv:class:: TrackerMILTargetState |
||||
|
||||
TrackerMILTargetState class:: |
||||
|
||||
class TrackerMILTargetState : public TrackerTargetState |
||||
{ |
||||
public: |
||||
TrackerMILTargetState( const Point2f& position, int targetWidth, int targetHeight, bool foreground, const Mat& features ); |
||||
~TrackerMILTargetState(){}; |
||||
|
||||
void setTargetFg( bool foreground ); |
||||
void setFeatures( const Mat& features ); |
||||
bool isTargetFg() const; |
||||
Mat getFeatures() const; |
||||
}; |
||||
|
||||
TrackerStateEstimatorMILBoosting::TrackerMILTargetState::setTargetFg |
||||
-------------------------------------------------------------------- |
||||
|
||||
Set label: true for target foreground, false for background |
||||
|
||||
.. ocv:function:: void TrackerStateEstimatorMILBoosting::TrackerMILTargetState::setTargetFg( bool foreground ) |
||||
|
||||
:param foreground: Label for background/foreground |
||||
|
||||
TrackerStateEstimatorMILBoosting::TrackerMILTargetState::setFeatures |
||||
-------------------------------------------------------------------- |
||||
|
||||
Set the features extracted from :ocv:class:`TrackerFeatureSet` |
||||
|
||||
.. ocv:function:: void TrackerStateEstimatorMILBoosting::TrackerMILTargetState::setFeatures( const Mat& features ) |
||||
|
||||
:param features: The features extracted |
||||
|
||||
TrackerStateEstimatorMILBoosting::TrackerMILTargetState::isTargetFg |
||||
------------------------------------------------------------------- |
||||
|
||||
Get the label. Return true for target foreground, false for background |
||||
|
||||
.. ocv:function:: bool TrackerStateEstimatorMILBoosting::TrackerMILTargetState::isTargetFg() const |
||||
|
||||
TrackerStateEstimatorMILBoosting::TrackerMILTargetState::getFeatures |
||||
-------------------------------------------------------------------- |
||||
|
||||
Get the features extracted |
||||
|
||||
.. ocv:function:: void TrackerStateEstimatorMILBoosting::TrackerMILTargetState::setFeatures( const Mat& features ) |
||||
|
||||
TrackerStateEstimatorMILBoosting::TrackerStateEstimatorMILBoosting |
||||
------------------------------------------------------------------ |
||||
|
||||
Constructor |
||||
|
||||
.. ocv:function:: TrackerStateEstimatorMILBoosting::TrackerStateEstimatorMILBoosting( int nFeatures=250 ) |
||||
|
||||
:param nFeatures: Number of features for each sample |
||||
|
||||
TrackerStateEstimatorMILBoosting::setCurrentConfidenceMap |
||||
--------------------------------------------------------- |
||||
|
||||
Set the current confidenceMap |
||||
|
||||
.. ocv:function:: void TrackerStateEstimatorMILBoosting::setCurrentConfidenceMap( ConfidenceMap& confidenceMap ) |
||||
|
||||
:param confidenceMap: The current :c:type:`ConfidenceMap` |
||||
|
||||
TrackerStateEstimatorAdaBoosting : TrackerStateEstimator |
||||
-------------------------------------------------------- |
||||
|
||||
TrackerStateEstimatorAdaBoosting based on ADA-Boosting |
||||
|
||||
.. ocv:class:: TrackerStateEstimatorAdaBoosting |
||||
|
||||
TrackerStateEstimatorAdaBoosting class:: |
||||
|
||||
class CV_EXPORTS_W TrackerStateEstimatorAdaBoosting : public TrackerStateEstimator |
||||
{ |
||||
public: |
||||
class TrackerAdaBoostingTargetState : public TrackerTargetState |
||||
{ |
||||
... |
||||
}; |
||||
TrackerStateEstimatorAdaBoosting( int numClassifer, int initIterations, int nFeatures, Size patchSize, const Rect& ROI, const std::vector<std::pair<float, float> >& meanSigma ); |
||||
~TrackerStateEstimatorAdaBoosting(); |
||||
|
||||
Rect getSampleROI() const; |
||||
void setSampleROI( const Rect& ROI ); |
||||
void setCurrentConfidenceMap( ConfidenceMap& confidenceMap ); |
||||
std::vector<int> computeSelectedWeakClassifier(); |
||||
std::vector<int> computeReplacedClassifier(); |
||||
std::vector<int> computeSwappedClassifier(); |
||||
void setMeanSigmaPair( const std::vector<std::pair<float, float> >& meanSigmaPair ); |
||||
}; |
||||
|
||||
TrackerAdaBoostingTargetState : TrackerTargetState |
||||
-------------------------------------------------- |
||||
|
||||
Implementation of the target state for TrackerAdaBoostingTargetState |
||||
|
||||
.. ocv:class:: TrackerAdaBoostingTargetState |
||||
|
||||
TrackerAdaBoostingTargetState class:: |
||||
|
||||
class TrackerAdaBoostingTargetState : public TrackerTargetState |
||||
{ |
||||
public: |
||||
TrackerAdaBoostingTargetState( const Point2f& position, int width, int height, bool foreground, const Mat& responses ); |
||||
~TrackerAdaBoostingTargetState(){}; |
||||
|
||||
void setTargetResponses( const Mat& responses ); |
||||
void setTargetFg( bool foreground ); |
||||
Mat getTargetResponses() const; |
||||
bool isTargetFg() const; |
||||
}; |
||||
|
||||
TrackerStateEstimatorAdaBoosting::TrackerAdaBoostingTargetState::setTargetFg |
||||
---------------------------------------------------------------------------- |
||||
|
||||
Set label: true for target foreground, false for background |
||||
|
||||
.. ocv:function:: void TrackerStateEstimatorAdaBoosting::TrackerAdaBoostingTargetState::setTargetFg( bool foreground ) |
||||
|
||||
:param foreground: Label for background/foreground |
||||
|
||||
TrackerStateEstimatorAdaBoosting::TrackerAdaBoostingTargetState::setTargetResponses |
||||
----------------------------------------------------------------------------------- |
||||
|
||||
Set the features extracted from :ocv:class:`TrackerFeatureSet` |
||||
|
||||
.. ocv:function:: void TrackerStateEstimatorAdaBoosting::TrackerAdaBoostingTargetState::setTargetResponses( const Mat& responses ) |
||||
|
||||
:param responses: The features extracted |
||||
|
||||
TrackerStateEstimatorAdaBoosting::TrackerAdaBoostingTargetState::isTargetFg |
||||
--------------------------------------------------------------------------- |
||||
|
||||
Get the label. Return true for target foreground, false for background |
||||
|
||||
.. ocv:function:: bool TrackerStateEstimatorAdaBoosting::TrackerAdaBoostingTargetState::isTargetFg() const |
||||
|
||||
TrackerStateEstimatorAdaBoosting::TrackerAdaBoostingTargetState::getTargetResponses |
||||
----------------------------------------------------------------------------------- |
||||
|
||||
Get the features extracted |
||||
|
||||
.. ocv:function:: Mat TrackerStateEstimatorAdaBoosting::TrackerAdaBoostingTargetState::getTargetResponses() |
||||
|
||||
TrackerStateEstimatorAdaBoosting::TrackerStateEstimatorAdaBoosting |
||||
------------------------------------------------------------------ |
||||
|
||||
Constructor |
||||
|
||||
.. ocv:function:: TrackerStateEstimatorAdaBoosting::TrackerStateEstimatorAdaBoosting( int numClassifer, int initIterations, int nFeatures, Size patchSize, const Rect& ROI, const std::vector<std::pair<float, float> >& meanSigma ) |
||||
|
||||
:param numClassifer: Number of base classifiers |
||||
|
||||
:param initIterations: Number of iterations in the initialization |
||||
|
||||
:param nFeatures: Number of features/weak classifiers |
||||
|
||||
:param patchSize: tracking rect |
||||
|
||||
:param ROI: initial ROI |
||||
|
||||
:param meanSigma: pairs of mean/sigma |
||||
|
||||
TrackerStateEstimatorAdaBoosting::setCurrentConfidenceMap |
||||
--------------------------------------------------------- |
||||
|
||||
Set the current confidenceMap |
||||
|
||||
.. ocv:function:: void TrackerStateEstimatorAdaBoosting::setCurrentConfidenceMap( ConfidenceMap& confidenceMap ) |
||||
|
||||
:param confidenceMap: The current :c:type:`ConfidenceMap` |
||||
|
||||
TrackerStateEstimatorAdaBoosting::getSampleROI |
||||
---------------------------------------------- |
||||
|
||||
Get the sampling ROI |
||||
|
||||
.. ocv:function:: Rect TrackerStateEstimatorAdaBoosting::getSampleROI() const |
||||
|
||||
TrackerStateEstimatorAdaBoosting::setSampleROI |
||||
---------------------------------------------- |
||||
|
||||
Set the sampling ROI |
||||
|
||||
.. ocv:function:: void TrackerStateEstimatorAdaBoosting::setSampleROI( const Rect& ROI ) |
||||
|
||||
:param ROI: the sampling ROI |
||||
|
||||
TrackerStateEstimatorAdaBoosting::computeSelectedWeakClassifier |
||||
--------------------------------------------------------------- |
||||
|
||||
Get the list of the selected weak classifiers for the classification step |
||||
|
||||
.. ocv:function:: std::vector<int> TrackerStateEstimatorAdaBoosting::computeSelectedWeakClassifier() |
||||
|
||||
TrackerStateEstimatorAdaBoosting::computeReplacedClassifier |
||||
----------------------------------------------------------- |
||||
|
||||
Get the list of the weak classifiers that should be replaced |
||||
|
||||
.. ocv:function:: std::vector<int> TrackerStateEstimatorAdaBoosting::computeReplacedClassifier() |
||||
|
||||
TrackerStateEstimatorAdaBoosting::computeSwappedClassifier |
||||
---------------------------------------------------------- |
||||
|
||||
Get the list of the weak classifiers that replace those to be replaced |
||||
|
||||
.. ocv:function:: std::vector<int> TrackerStateEstimatorAdaBoosting::computeSwappedClassifier() |
||||
|
||||
TrackerStateEstimatorAdaBoosting::setMeanSigmaPair |
||||
-------------------------------------------------- |
||||
|
||||
Set the mean/sigma to instantiate possibly new classifiers |
||||
|
||||
.. ocv:function:: void TrackerStateEstimatorAdaBoosting::setMeanSigmaPair( const std::vector<std::pair<float, float> >& meanSigmaPair ) |
||||
|
||||
:param meanSigmaPair: the mean/sigma pairs |
@ -0,0 +1,293 @@ |
||||
Common Interfaces of TrackerSampler |
||||
=================================== |
||||
|
||||
.. highlight:: cpp |
||||
|
||||
|
||||
TrackerSampler |
||||
-------------- |
||||
|
||||
Class that manages the sampler in order to select regions for the update the model of the tracker |
||||
|
||||
[AAM]_ Sampling e Labeling. See table I and section III B |
||||
|
||||
.. ocv:class:: TrackerSampler |
||||
|
||||
TrackerSampler class:: |
||||
|
||||
class CV_EXPORTS_W TrackerSampler |
||||
{ |
||||
public: |
||||
|
||||
TrackerSampler(); |
||||
~TrackerSampler(); |
||||
|
||||
void sampling( const Mat& image, Rect boundingBox ); |
||||
|
||||
const std::vector<std::pair<String, Ptr<TrackerSamplerAlgorithm> > >& getSamplers() const; |
||||
const std::vector<Mat>& getSamples() const; |
||||
|
||||
bool addTrackerSamplerAlgorithm( String trackerSamplerAlgorithmType ); |
||||
bool addTrackerSamplerAlgorithm( Ptr<TrackerSamplerAlgorithm>& sampler ); |
||||
|
||||
}; |
||||
|
||||
|
||||
TrackerSampler is an aggregation of :ocv:class:`TrackerSamplerAlgorithm` |
||||
|
||||
.. seealso:: |
||||
|
||||
:ocv:class:`TrackerSamplerAlgorithm` |
||||
|
||||
TrackerSampler::sampling |
||||
------------------------ |
||||
|
||||
Computes the regions starting from a position in an image |
||||
|
||||
.. ocv:function:: void TrackerSampler::sampling( const Mat& image, Rect boundingBox ) |
||||
|
||||
:param image: The current frame |
||||
|
||||
:param boundingBox: The bounding box from which regions can be calculated |
||||
|
||||
|
||||
TrackerSampler::getSamplers |
||||
--------------------------- |
||||
|
||||
Return the collection of the :ocv:class:`TrackerSamplerAlgorithm` |
||||
|
||||
.. ocv:function:: const std::vector<std::pair<String, Ptr<TrackerSamplerAlgorithm> > >& TrackerSampler::getSamplers() const |
||||
|
||||
|
||||
TrackerSampler::getSamples |
||||
-------------------------- |
||||
|
||||
Return the samples from all :ocv:class:`TrackerSamplerAlgorithm`, [AAM]_ Fig. 1 variable Sk |
||||
|
||||
.. ocv:function:: const std::vector<Mat>& TrackerSampler::getSamples() const |
||||
|
||||
TrackerSampler::addTrackerSamplerAlgorithm |
||||
------------------------------------------ |
||||
|
||||
Add TrackerSamplerAlgorithm in the collection. |
||||
Return true if sampler is added, false otherwise |
||||
|
||||
.. ocv:function:: bool TrackerSampler::addTrackerSamplerAlgorithm( String trackerSamplerAlgorithmType ) |
||||
|
||||
:param trackerSamplerAlgorithmType: The TrackerSamplerAlgorithm name |
||||
|
||||
.. ocv:function:: bool TrackerSampler::addTrackerSamplerAlgorithm( Ptr<TrackerSamplerAlgorithm>& sampler ) |
||||
|
||||
:param sampler: The TrackerSamplerAlgorithm class |
||||
|
||||
|
||||
The modes available now: |
||||
|
||||
* ``"CSC"`` -- Current State Center |
||||
|
||||
* ``"CS"`` -- Current State |
||||
|
||||
Example ``TrackerSamplerAlgorithm::addTrackerSamplerAlgorithm`` : :: |
||||
|
||||
//sample usage: |
||||
|
||||
TrackerSamplerCSC::Params CSCparameters; |
||||
Ptr<TrackerSamplerAlgorithm> CSCSampler = new TrackerSamplerCSC( CSCparameters ); |
||||
|
||||
if( !sampler->addTrackerSamplerAlgorithm( CSCSampler ) ) |
||||
return false; |
||||
|
||||
//or add CSC sampler with default parameters |
||||
//sampler->addTrackerSamplerAlgorithm( "CSC" ); |
||||
|
||||
|
||||
.. note:: If you use the second method, you must initialize the TrackerSamplerAlgorithm |
||||
|
||||
|
||||
TrackerSamplerAlgorithm |
||||
----------------------- |
||||
|
||||
Abstract base class for TrackerSamplerAlgorithm that represents the algorithm for the specific sampler. |
||||
|
||||
.. ocv:class:: TrackerSamplerAlgorithm |
||||
|
||||
TrackerSamplerAlgorithm class:: |
||||
|
||||
class CV_EXPORTS_W TrackerSamplerAlgorithm |
||||
{ |
||||
public: |
||||
|
||||
virtual ~TrackerSamplerAlgorithm(); |
||||
|
||||
static Ptr<TrackerSamplerAlgorithm> create( const String& trackerSamplerType ); |
||||
|
||||
bool sampling( const Mat& image, Rect boundingBox, std::vector<Mat>& sample ); |
||||
String getClassName() const; |
||||
}; |
||||
|
||||
TrackerSamplerAlgorithm::create |
||||
------------------------------- |
||||
|
||||
Create TrackerSamplerAlgorithm by tracker sampler type. |
||||
|
||||
.. ocv:function:: static Ptr<TrackerSamplerAlgorithm> TrackerSamplerAlgorithm::create( const String& trackerSamplerType ) |
||||
|
||||
:param trackerSamplerType: The trackerSamplerType name |
||||
|
||||
The modes available now: |
||||
|
||||
* ``"CSC"`` -- Current State Center |
||||
|
||||
* ``"CS"`` -- Current State |
||||
|
||||
|
||||
TrackerSamplerAlgorithm::sampling |
||||
--------------------------------- |
||||
|
||||
Computes the regions starting from a position in an image. Return true if samples are computed, false otherwise |
||||
|
||||
.. ocv:function:: bool TrackerSamplerAlgorithm::sampling( const Mat& image, Rect boundingBox, std::vector<Mat>& sample ) |
||||
|
||||
:param image: The current frame |
||||
|
||||
:param boundingBox: The bounding box from which regions can be calculated |
||||
|
||||
:sample: The computed samples [AAM]_ Fig. 1 variable Sk |
||||
|
||||
TrackerSamplerAlgorithm::getClassName |
||||
------------------------------------- |
||||
|
||||
Get the name of the specific TrackerSamplerAlgorithm |
||||
|
||||
.. ocv:function:: String TrackerSamplerAlgorithm::getClassName() const |
||||
|
||||
Specialized TrackerSamplerAlgorithm |
||||
=================================== |
||||
|
||||
In [AAM]_ table I are described the most known sampling strategies. At moment :ocv:class:`TrackerSamplerCSC` and :ocv:class:`TrackerSamplerCS` are implemented. |
||||
|
||||
TrackerSamplerCSC : TrackerSamplerAlgorithm |
||||
------------------------------------------- |
||||
|
||||
TrackerSampler based on CSC (current state centered), used by MIL algorithm TrackerMIL |
||||
|
||||
.. ocv:class:: TrackerSamplerCSC |
||||
|
||||
TrackerSamplerCSC class:: |
||||
|
||||
|
||||
class CV_EXPORTS_W TrackerSamplerCSC |
||||
{ |
||||
public: |
||||
|
||||
TrackerSamplerCSC( const TrackerSamplerCSC::Params ¶meters = TrackerSamplerCSC::Params() ); |
||||
void setMode( int samplingMode ); |
||||
|
||||
~TrackerSamplerCSC(); |
||||
}; |
||||
|
||||
|
||||
TrackerSamplerCSC::Params |
||||
------------------------- |
||||
|
||||
.. ocv:struct:: TrackerSamplerCSC::Params |
||||
|
||||
List of TrackerSamplerCSC parameters:: |
||||
|
||||
struct CV_EXPORTS Params |
||||
{ |
||||
Params(); |
||||
float initInRad; // radius for gathering positive instances during init |
||||
float trackInPosRad; // radius for gathering positive instances during tracking |
||||
float searchWinSize; // size of search window |
||||
int initMaxNegNum; // # negative samples to use during init |
||||
int trackMaxPosNum; // # positive samples to use during training |
||||
int trackMaxNegNum; // # negative samples to use during training |
||||
}; |
||||
|
||||
|
||||
TrackerSamplerCSC::TrackerSamplerCSC |
||||
------------------------------------ |
||||
|
||||
Constructor |
||||
|
||||
.. ocv:function:: TrackerSamplerCSC::TrackerSamplerCSC( const TrackerSamplerCSC::Params ¶meters = TrackerSamplerCSC::Params() ) |
||||
|
||||
:param parameters: TrackerSamplerCSC parameters :ocv:struct:`TrackerSamplerCSC::Params` |
||||
|
||||
TrackerSamplerCSC::setMode |
||||
-------------------------- |
||||
|
||||
Set the sampling mode of TrackerSamplerCSC |
||||
|
||||
.. ocv:function:: void TrackerSamplerCSC::setMode( int samplingMode ) |
||||
|
||||
:param samplingMode: The sampling mode |
||||
|
||||
The modes are: |
||||
|
||||
* ``"MODE_INIT_POS = 1"`` -- for the positive sampling in initialization step |
||||
* ``"MODE_INIT_NEG = 2"`` -- for the negative sampling in initialization step |
||||
* ``"MODE_TRACK_POS = 3"`` -- for the positive sampling in update step |
||||
* ``"MODE_TRACK_NEG = 4"`` -- for the negative sampling in update step |
||||
* ``"MODE_DETECT = 5"`` -- for the sampling in detection step |
||||
|
||||
TrackerSamplerCS : TrackerSamplerAlgorithm |
||||
------------------------------------------- |
||||
|
||||
TrackerSampler based on CS (current state), used by algorithm TrackerBoosting |
||||
|
||||
.. ocv:class:: TrackerSamplerCS |
||||
|
||||
TrackerSamplerCS class:: |
||||
|
||||
|
||||
class CV_EXPORTS_W TrackerSamplerCS |
||||
{ |
||||
public: |
||||
|
||||
TrackerSamplerCS( const TrackerSamplerCS::Params ¶meters = TrackerSamplerCS::Params() ); |
||||
void setMode( int samplingMode ); |
||||
|
||||
~TrackerSamplerCS(); |
||||
}; |
||||
|
||||
|
||||
TrackerSamplerCS::Params |
||||
------------------------- |
||||
|
||||
.. ocv:struct:: TrackerSamplerCS::Params |
||||
|
||||
List of TrackerSamplerCS parameters:: |
||||
|
||||
struct CV_EXPORTS Params |
||||
{ |
||||
Params(); |
||||
float overlap; //overlapping for the search windows |
||||
float searchFactor; //search region parameter |
||||
}; |
||||
|
||||
|
||||
TrackerSamplerCS::TrackerSamplerCS |
||||
------------------------------------ |
||||
|
||||
Constructor |
||||
|
||||
.. ocv:function:: TrackerSamplerCS::TrackerSamplerCS( const TrackerSamplerCS::Params ¶meters = TrackerSamplerCS::Params() ) |
||||
|
||||
:param parameters: TrackerSamplerCS parameters :ocv:struct:`TrackerSamplerCS::Params` |
||||
|
||||
TrackerSamplerCS::setMode |
||||
-------------------------- |
||||
|
||||
Set the sampling mode of TrackerSamplerCS |
||||
|
||||
.. ocv:function:: void TrackerSamplerCS::setMode( int samplingMode ) |
||||
|
||||
:param samplingMode: The sampling mode |
||||
|
||||
The modes are: |
||||
|
||||
* ``"MODE_POSITIVE = 1"`` -- for the positive sampling |
||||
* ``"MODE_NEGATIVE = 2"`` -- for the negative sampling |
||||
* ``"MODE_CLASSIFY = 3"`` -- for the sampling in classification step |
@ -0,0 +1,43 @@ |
||||
@startuml |
||||
package "Tracker package" #DDDDDD { |
||||
|
||||
|
||||
|
||||
|
||||
class Algorithm { |
||||
} |
||||
class Tracker{ |
||||
Ptr<TrackerFeatureSet> featureSet; |
||||
Ptr<TrackerSampler> sampler; |
||||
Ptr<TrackerModel> model; |
||||
--- |
||||
+static Ptr<Tracker> create(const string& trackerType); |
||||
+bool init(const Mat& image, const Rect& boundingBox); |
||||
+bool update(const Mat& image, Rect& boundingBox); |
||||
} |
||||
class Tracker |
||||
note right: Tracker is the general interface for each specialized trackers |
||||
class TrackerMIL{ |
||||
+Params |
||||
--- |
||||
TrackerMIL(TrackerMIL::Params parameters); |
||||
+bool init(const Mat& image, const Rect& boundingBox); |
||||
+bool update(const Mat& image, Rect& boundingBox); |
||||
} |
||||
class TrackerBoosting{ |
||||
+Params |
||||
--- |
||||
TrackerBoosting(TrackerBoosting::Params parameters); |
||||
+bool init(const Mat& image, const Rect& boundingBox); |
||||
+bool update(const Mat& image, Rect& boundingBox); |
||||
} |
||||
Algorithm <|-- Tracker : virtual inheritance |
||||
Tracker <|-- TrackerMIL |
||||
Tracker <|-- TrackerBoosting |
||||
|
||||
note "Single instance of the Tracker" as N1 |
||||
TrackerBoosting .. N1 |
||||
TrackerMIL .. N1 |
||||
} |
||||
|
||||
@enduml |
@ -0,0 +1,55 @@ |
||||
@startuml |
||||
package "TrackerFeature package" #DDDDDD { |
||||
|
||||
class TrackerFeatureSet{ |
||||
-vector<pair<string, Ptr<TrackerFeature> > > features |
||||
-vector<Mat> responses |
||||
... |
||||
TrackerFeatureSet(); |
||||
~TrackerFeatureSet(); |
||||
-- |
||||
+extraction(const std::vector<Mat>& images); |
||||
+selection(); |
||||
+removeOutliers(); |
||||
+vector<Mat> response getResponses(); |
||||
+vector<pair<string TrackerFeatureType, Ptr<TrackerFeature> > > getTrackerFeatures(); |
||||
+bool addTrackerFeature(string trackerFeatureType); |
||||
+bool addTrackerFeature(Ptr<TrackerFeature>& feature); |
||||
-clearResponses(); |
||||
} |
||||
|
||||
class TrackerFeature <<virtual>>{ |
||||
static Ptr<TrackerFeature> = create(const string& trackerFeatureType); |
||||
compute(const std::vector<Mat>& images, Mat& response); |
||||
selection(Mat& response, int npoints); |
||||
} |
||||
note bottom: Can be specialized as in table II\nA tracker can use more types of features |
||||
|
||||
class TrackerFeatureFeature2D{ |
||||
-vector<Keypoints> keypoints |
||||
--- |
||||
TrackerFeatureFeature2D(string detectorType, string descriptorType); |
||||
~TrackerFeatureFeature2D(); |
||||
--- |
||||
compute(const std::vector<Mat>& images, Mat& response); |
||||
selection( Mat& response, int npoints); |
||||
} |
||||
class TrackerFeatureHOG{ |
||||
TrackerFeatureHOG(); |
||||
~TrackerFeatureHOG(); |
||||
--- |
||||
compute(const std::vector<Mat>& images, Mat& response); |
||||
selection(Mat& response, int npoints); |
||||
} |
||||
|
||||
TrackerFeatureSet *-- TrackerFeature |
||||
TrackerFeature <|-- TrackerFeatureHOG |
||||
TrackerFeature <|-- TrackerFeatureFeature2D |
||||
|
||||
|
||||
note "Per readability and simplicity in this diagram\n there are only two TrackerFeature but you\n can considering the implementation of the other TrackerFeature" as N1 |
||||
TrackerFeatureHOG .. N1 |
||||
TrackerFeatureFeature2D .. N1 |
||||
} |
||||
|
||||
@enduml |
@ -0,0 +1,62 @@ |
||||
@startuml |
||||
package "TrackerModel package" #DDDDDD { |
||||
|
||||
class Typedef << (T,#FF7700) >>{ |
||||
ConfidenceMap |
||||
Trajectory |
||||
} |
||||
|
||||
class TrackerModel{ |
||||
-vector<ConfidenceMap> confidenceMaps; |
||||
-Trajectory trajectory; |
||||
-Ptr<TrackerStateEstimator> stateEstimator; |
||||
... |
||||
TrackerModel(); |
||||
~TrackerModel(); |
||||
|
||||
+bool setTrackerStateEstimator(Ptr<TrackerStateEstimator> trackerStateEstimator); |
||||
+Ptr<TrackerStateEstimator> getTrackerStateEstimator(); |
||||
|
||||
+void modelEstimation(const vector<Mat>& responses); |
||||
+void modelUpdate(); |
||||
+void setLastTargetState(const Ptr<TrackerTargetState> lastTargetState); |
||||
+void runStateEstimator(); |
||||
|
||||
+const vector<ConfidenceMap>& getConfidenceMaps(); |
||||
+const ConfidenceMap& getLastConfidenceMap(); |
||||
} |
||||
class TrackerTargetState <<virtual>>{ |
||||
Point2f targetPosition; |
||||
--- |
||||
Point2f getTargetPosition(); |
||||
void setTargetPosition(Point2f position); |
||||
} |
||||
class TrackerTargetState |
||||
note bottom: Each TrackerStateEstimator can create own state |
||||
|
||||
class TrackerStateEstimator <<virtual>>{ |
||||
~TrackerStateEstimator(); |
||||
static Ptr<TrackerStateEstimator> create(const String& trackeStateEstimatorType); |
||||
Ptr<TrackerTargetState> estimate(const vector<ConfidenceMap>& confidenceMaps) |
||||
void update(vector<ConfidenceMap>& confidenceMaps) |
||||
} |
||||
|
||||
class TrackerStateEstimatorSVM{ |
||||
TrackerStateEstimatorSVM() |
||||
~TrackerStateEstimatorSVM() |
||||
Ptr<TrackerTargetState> estimate(const vector<ConfidenceMap>& confidenceMaps) |
||||
void update(vector<ConfidenceMap>& confidenceMaps) |
||||
} |
||||
class TrackerStateEstimatorMILBoosting{ |
||||
TrackerStateEstimatorMILBoosting() |
||||
~TrackerStateEstimatorMILBoosting() |
||||
Ptr<TrackerTargetState> estimate(const vector<ConfidenceMap>& confidenceMaps) |
||||
void update(vector<ConfidenceMap>& confidenceMaps) |
||||
} |
||||
|
||||
TrackerModel -> TrackerStateEstimator: create |
||||
TrackerModel *-- TrackerTargetState |
||||
TrackerStateEstimator <|-- TrackerStateEstimatorMILBoosting |
||||
TrackerStateEstimator <|-- TrackerStateEstimatorSVM |
||||
} |
||||
@enduml |
@ -0,0 +1,44 @@ |
||||
@startuml |
||||
package "TrackerSampler package" #DDDDDD { |
||||
|
||||
class TrackerSampler{ |
||||
-vector<pair<String, Ptr<TrackerSamplerAlgorithm> > > samplers |
||||
-vector<Mat> samples; |
||||
... |
||||
TrackerSampler(); |
||||
~TrackerSampler(); |
||||
+sampling(const Mat& image, Rect boundingBox); |
||||
+const vector<pair<String, Ptr<TrackerSamplerAlgorithm> > >& getSamplers(); |
||||
+const vector<Mat>& getSamples(); |
||||
+bool addTrackerSamplerAlgorithm(String trackerSamplerAlgorithmType); |
||||
+bool addTrackerSamplerAlgorithm(Ptr<TrackerSamplerAlgorithm>& sampler); |
||||
--- |
||||
-void clearSamples(); |
||||
} |
||||
|
||||
class TrackerSamplerAlgorithm{ |
||||
~TrackerSamplerAlgorithm(); |
||||
+static Ptr<TrackerSamplerAlgorithm> create(const String& trackerSamplerType); |
||||
+bool sampling(const Mat& image, Rect boundingBox, vector<Mat>& sample); |
||||
} |
||||
note bottom: A tracker could sample the target\nor it could sample the target and the background |
||||
|
||||
|
||||
class TrackerSamplerCS{ |
||||
TrackerSamplerCS(); |
||||
~TrackerSamplerCS(); |
||||
+bool sampling(const Mat& image, Rect boundingBox, vector<Mat>& sample); |
||||
} |
||||
class TrackerSamplerCSC{ |
||||
TrackerSamplerCSC(); |
||||
~TrackerSamplerCSC(); |
||||
+bool sampling(const Mat& image, Rect boundingBox, vector<Mat>& sample); |
||||
} |
||||
|
||||
|
||||
|
||||
TrackerSampler *-- TrackerSamplerAlgorithm |
||||
TrackerSamplerAlgorithm <|-- TrackerSamplerCS |
||||
TrackerSamplerAlgorithm <|-- TrackerSamplerCSC |
||||
} |
||||
@enduml |
@ -0,0 +1,19 @@ |
||||
@startuml |
||||
package "Tracker" #DDDDDD { |
||||
|
||||
} |
||||
package "TrackerFeature" #DDDDDD { |
||||
|
||||
} |
||||
package "TrackerSampler" #DDDDDD { |
||||
|
||||
} |
||||
package "TrackerModel" #DDDDDD { |
||||
|
||||
} |
||||
Tracker -> TrackerModel: create |
||||
Tracker -> TrackerSampler: create |
||||
Tracker -> TrackerFeature: create |
||||
|
||||
|
||||
@enduml |
After Width: | Height: | Size: 32 KiB |
After Width: | Height: | Size: 59 KiB |
After Width: | Height: | Size: 56 KiB |
After Width: | Height: | Size: 47 KiB |
After Width: | Height: | Size: 8.5 KiB |
@ -0,0 +1,121 @@ |
||||
Tracker Algorithms |
||||
================== |
||||
|
||||
.. highlight:: cpp |
||||
|
||||
Two algorithms will be implemented soon, the first is MIL (Multiple Instance Learning) [MIL]_ and second is Online Boosting [OLB]_. |
||||
|
||||
.. [MIL] B Babenko, M-H Yang, and S Belongie, Visual Tracking with Online Multiple Instance Learning, In CVPR, 2009 |
||||
|
||||
.. [OLB] H Grabner, M Grabner, and H Bischof, Real-time tracking via on-line boosting, In Proc. BMVC, volume 1, pages 47– 56, 2006 |
||||
|
||||
TrackerBoosting |
||||
--------------- |
||||
|
||||
This is a real-time object tracking based on a novel on-line version of the AdaBoost algorithm. |
||||
The classifier uses the surrounding background as negative examples in update step to avoid the drifting problem. |
||||
|
||||
.. ocv:class:: TrackerBoosting |
||||
|
||||
Implementation of TrackerBoosting from :ocv:class:`Tracker`:: |
||||
|
||||
class CV_EXPORTS_W TrackerBoosting : public Tracker |
||||
{ |
||||
public: |
||||
|
||||
TrackerBoosting( const TrackerBoosting::Params ¶meters = TrackerBoosting::Params() ); |
||||
|
||||
virtual ~TrackerBoosting(); |
||||
|
||||
void read( const FileNode& fn ); |
||||
void write( FileStorage& fs ) const; |
||||
|
||||
|
||||
}; |
||||
|
||||
TrackerMIL |
||||
---------- |
||||
|
||||
The MIL algorithm trains a classifier in an online manner to separate the object from the background. Multiple Instance Learning avoids the drift problem for a robust tracking. |
||||
|
||||
Original code can be found here http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml |
||||
|
||||
.. ocv:class:: TrackerMIL |
||||
|
||||
Implementation of TrackerMIL from :ocv:class:`Tracker`:: |
||||
|
||||
class CV_EXPORTS_W TrackerMIL : public Tracker |
||||
{ |
||||
public: |
||||
|
||||
TrackerMIL( const TrackerMIL::Params ¶meters = TrackerMIL::Params() ); |
||||
|
||||
virtual ~TrackerMIL(); |
||||
|
||||
void read( const FileNode& fn ); |
||||
void write( FileStorage& fs ) const; |
||||
|
||||
}; |
||||
|
||||
TrackerMIL::Params |
||||
------------------ |
||||
|
||||
.. ocv:struct:: TrackerMIL::Params |
||||
|
||||
List of MIL parameters:: |
||||
|
||||
struct CV_EXPORTS Params |
||||
{ |
||||
Params(); |
||||
//parameters for sampler |
||||
float samplerInitInRadius; // radius for gathering positive instances during init |
||||
int samplerInitMaxNegNum; // # negative samples to use during init |
||||
float samplerSearchWinSize; // size of search window |
||||
float samplerTrackInRadius; // radius for gathering positive instances during tracking |
||||
int samplerTrackMaxPosNum; // # positive samples to use during tracking |
||||
int samplerTrackMaxNegNum; // # negative samples to use during tracking |
||||
|
||||
int featureSetNumFeatures; // # features |
||||
|
||||
void read( const FileNode& fn ); |
||||
void write( FileStorage& fs ) const; |
||||
}; |
||||
|
||||
TrackerMIL::TrackerMIL |
||||
---------------------- |
||||
|
||||
Constructor |
||||
|
||||
.. ocv:function:: bool TrackerMIL::TrackerMIL( const TrackerMIL::Params ¶meters = TrackerMIL::Params() ) |
||||
|
||||
:param parameters: MIL parameters :ocv:struct:`TrackerMIL::Params` |
||||
|
||||
|
||||
TrackerBoosting::Params |
||||
------------------ |
||||
|
||||
.. ocv:struct:: TrackerBoosting::Params |
||||
|
||||
List of BOOSTING parameters:: |
||||
|
||||
struct CV_EXPORTS Params |
||||
{ |
||||
Params(); |
||||
int numClassifiers; //the number of classifiers to use in a OnlineBoosting algorithm |
||||
float samplerOverlap; //search region parameters to use in a OnlineBoosting algorithm |
||||
float samplerSearchFactor; // search region parameters to use in a OnlineBoosting algorithm |
||||
int iterationInit; //the initial iterations |
||||
int featureSetNumFeatures; // #features |
||||
|
||||
void read( const FileNode& fn ); |
||||
void write( FileStorage& fs ) const; |
||||
}; |
||||
|
||||
TrackerBoosting::TrackerBoosting |
||||
---------------------- |
||||
|
||||
Constructor |
||||
|
||||
.. ocv:function:: bool TrackerBoosting::TrackerBoosting( const TrackerBoosting::Params ¶meters = TrackerBoosting::Params() ) |
||||
|
||||
:param parameters: BOOSTING parameters :ocv:struct:`TrackerBoosting::Params` |
@ -0,0 +1,86 @@ |
||||
Tracking API |
||||
============ |
||||
|
||||
.. highlight:: cpp |
||||
|
||||
|
||||
Long-term optical tracking API |
||||
------------------------------ |
||||
Long-term optical tracking is one of most important issue for many computer vision applications in real world scenario. |
||||
The development in this area is very fragmented and this API is an unique interface useful for plug several algorithms and compare them. |
||||
This work is partially based on [AAM]_ and [AMVOT]_. |
||||
|
||||
This algorithms start from a bounding box of the target and with their internal representation they avoid the drift during the tracking. |
||||
These long-term trackers are able to evaluate online the quality of the location of the target in the new frame, without ground truth. |
||||
|
||||
There are three main components: the TrackerSampler, the TrackerFeatureSet and the TrackerModel. The first component is the object that computes the patches over the frame based on the last target location. |
||||
The TrackerFeatureSet is the class that manages the Features, is possible plug many kind of these (HAAR, HOG, LBP, Feature2D, etc). |
||||
The last component is the internal representation of the target, it is the appearence model. It stores all state candidates and compute the trajectory (the most likely target states). The class TrackerTargetState represents a possible state of the target. |
||||
The TrackerSampler and the TrackerFeatureSet are the visual representation of the target, instead the TrackerModel is the statistical model. |
||||
|
||||
A recent benchmark between these algorithms can be found in [OOT]_. |
||||
|
||||
UML design: |
||||
----------- |
||||
|
||||
**General diagram** |
||||
|
||||
.. image:: pics/package.png |
||||
:width: 50% |
||||
:alt: General diagram |
||||
:align: center |
||||
|
||||
**Tracker diagram** |
||||
|
||||
.. image:: pics/Tracker.png |
||||
:width: 80% |
||||
:alt: Tracker diagram |
||||
:align: center |
||||
|
||||
**TrackerSampler diagram** |
||||
|
||||
.. image:: pics/TrackerSampler.png |
||||
:width: 100% |
||||
:alt: TrackerSampler diagram |
||||
:align: center |
||||
|
||||
**TrackerFeatureSet diagram** |
||||
|
||||
.. image:: pics/TrackerFeature.png |
||||
:width: 100% |
||||
:alt: TrackerFeatureSet diagram |
||||
:align: center |
||||
|
||||
**TrackerModel diagram** |
||||
|
||||
.. image:: pics/TrackerModel.png |
||||
:width: 100% |
||||
:alt: TrackerModel diagram |
||||
:align: center |
||||
|
||||
To see how API works, try tracker demo: |
||||
https://github.com/lenlen/opencv/blob/tracking_api/samples/cpp/tracker.cpp |
||||
|
||||
|
||||
.. note:: This Tracking API has been designed with PlantUML. If you modify this API please change UML files under modules/tracking/misc/ |
||||
|
||||
The following reference was used in the API |
||||
|
||||
.. [AAM] S Salti, A Cavallaro, L Di Stefano, Adaptive Appearance Modeling for Video Tracking: Survey and Evaluation, IEEE Transactions on Image Processing, Vol. 21, Issue 10, October 2012, pp. 4334-4348 |
||||
|
||||
.. [AMVOT] X Li, W Hu, C Shen, Z Zhang, A Dick, A van den Hengel, A Survey of Appearance Models in Visual Object Tracking, ACM Transactions on Intelligent Systems and Technology (TIST), 2013 |
||||
|
||||
.. [OOT] Yi Wu and Jongwoo Lim and Ming-Hsuan Yang, Online Object Tracking: A Benchmark, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013 |
||||
|
||||
|
||||
Tracker classes: |
||||
---------------- |
||||
|
||||
.. toctree:: |
||||
:maxdepth: 2 |
||||
|
||||
tracker_algorithms |
||||
common_interfaces_tracker |
||||
common_interfaces_tracker_sampler |
||||
common_interfaces_tracker_feature_set |
||||
common_interfaces_tracker_model |
@ -0,0 +1,52 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_TRACKING_HPP__ |
||||
#define __OPENCV_TRACKING_HPP__ |
||||
|
||||
#include "opencv2/tracking/tracker.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
CV_EXPORTS bool initModule_tracking(void); |
||||
} |
||||
|
||||
#endif //__OPENCV_TRACKING_HPP__
|
@ -0,0 +1,410 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_FEATURE_HPP__ |
||||
#define __OPENCV_FEATURE_HPP__ |
||||
|
||||
#include "opencv2/core.hpp" |
||||
#include "opencv2/imgproc.hpp" |
||||
#include <iostream> |
||||
#include <string> |
||||
#include <time.h> |
||||
|
||||
/*
|
||||
* TODO This implementation is based on apps/traincascade/ |
||||
* TODO Changed CvHaarEvaluator based on ADABOOSTING implementation (Grabner et al.) |
||||
*/ |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
#define FEATURES "features" |
||||
|
||||
#define CC_FEATURES FEATURES |
||||
#define CC_FEATURE_PARAMS "featureParams" |
||||
#define CC_MAX_CAT_COUNT "maxCatCount" |
||||
#define CC_FEATURE_SIZE "featSize" |
||||
#define CC_NUM_FEATURES "numFeat" |
||||
#define CC_ISINTEGRAL "isIntegral" |
||||
#define CC_RECTS "rects" |
||||
#define CC_TILTED "tilted" |
||||
#define CC_RECT "rect" |
||||
|
||||
#define LBPF_NAME "lbpFeatureParams" |
||||
#define HOGF_NAME "HOGFeatureParams" |
||||
#define HFP_NAME "haarFeatureParams" |
||||
|
||||
#define CV_HAAR_FEATURE_MAX 3 |
||||
#define N_BINS 9 |
||||
#define N_CELLS 4 |
||||
|
||||
#define CV_SUM_OFFSETS( p0, p1, p2, p3, rect, step ) \ |
||||
/* (x, y) */ \
|
||||
(p0) = (rect).x + (step) * (rect).y; \
|
||||
/* (x + w, y) */ \
|
||||
(p1) = (rect).x + (rect).width + (step) * (rect).y; \
|
||||
/* (x + w, y) */ \
|
||||
(p2) = (rect).x + (step) * ((rect).y + (rect).height); \
|
||||
/* (x + w, y + h) */ \
|
||||
(p3) = (rect).x + (rect).width + (step) * ((rect).y + (rect).height); |
||||
|
||||
#define CV_TILTED_OFFSETS( p0, p1, p2, p3, rect, step ) \ |
||||
/* (x, y) */ \
|
||||
(p0) = (rect).x + (step) * (rect).y; \
|
||||
/* (x - h, y + h) */ \
|
||||
(p1) = (rect).x - (rect).height + (step) * ((rect).y + (rect).height);\
|
||||
/* (x + w, y + w) */ \
|
||||
(p2) = (rect).x + (rect).width + (step) * ((rect).y + (rect).width); \
|
||||
/* (x + w - h, y + w + h) */ \
|
||||
(p3) = (rect).x + (rect).width - (rect).height \
|
||||
+ (step) * ((rect).y + (rect).width + (rect).height); |
||||
|
||||
float calcNormFactor( const Mat& sum, const Mat& sqSum ); |
||||
|
||||
template<class Feature> |
||||
void _writeFeatures( const std::vector<Feature> features, FileStorage &fs, const Mat& featureMap ) |
||||
{ |
||||
fs << FEATURES << "["; |
||||
const Mat_<int>& featureMap_ = (const Mat_<int>&) featureMap; |
||||
for ( int fi = 0; fi < featureMap.cols; fi++ ) |
||||
if( featureMap_( 0, fi ) >= 0 ) |
||||
{ |
||||
fs << "{"; |
||||
features[fi].write( fs ); |
||||
fs << "}"; |
||||
} |
||||
fs << "]"; |
||||
} |
||||
|
||||
class CvParams |
||||
{ |
||||
public: |
||||
CvParams(); |
||||
virtual ~CvParams() |
||||
{ |
||||
} |
||||
// from|to file
|
||||
virtual void write( FileStorage &fs ) const = 0; |
||||
virtual bool read( const FileNode &node ) = 0; |
||||
// from|to screen
|
||||
virtual void printDefaults() const; |
||||
virtual void printAttrs() const; |
||||
virtual bool scanAttr( const std::string prmName, const std::string val ); |
||||
std::string name; |
||||
}; |
||||
|
||||
class CvFeatureParams : public CvParams |
||||
{ |
||||
public: |
||||
enum
|
||||
{ |
||||
HAAR = 0, |
||||
LBP = 1, |
||||
HOG = 2 |
||||
}; |
||||
CvFeatureParams(); |
||||
virtual void init( const CvFeatureParams& fp ); |
||||
virtual void write( FileStorage &fs ) const; |
||||
virtual bool read( const FileNode &node ); |
||||
static Ptr<CvFeatureParams> create( int featureType ); |
||||
int maxCatCount; // 0 in case of numerical features
|
||||
int featSize; // 1 in case of simple features (HAAR, LBP) and N_BINS(9)*N_CELLS(4) in case of Dalal's HOG features
|
||||
int numFeatures; |
||||
}; |
||||
|
||||
class CvFeatureEvaluator |
||||
{ |
||||
public: |
||||
virtual ~CvFeatureEvaluator() |
||||
{ |
||||
} |
||||
virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize ); |
||||
virtual void setImage( const Mat& img, uchar clsLabel, int idx ); |
||||
virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const = 0; |
||||
virtual float operator()( int featureIdx, int sampleIdx ) = 0; |
||||
static Ptr<CvFeatureEvaluator> create( int type ); |
||||
|
||||
int getNumFeatures() const |
||||
{ |
||||
return numFeatures; |
||||
} |
||||
int getMaxCatCount() const |
||||
{ |
||||
return featureParams->maxCatCount; |
||||
} |
||||
int getFeatureSize() const |
||||
{ |
||||
return featureParams->featSize; |
||||
} |
||||
const Mat& getCls() const |
||||
{ |
||||
return cls; |
||||
} |
||||
float getCls( int si ) const |
||||
{ |
||||
return cls.at<float>( si, 0 ); |
||||
} |
||||
protected: |
||||
virtual void generateFeatures() = 0; |
||||
|
||||
int npos, nneg; |
||||
int numFeatures; |
||||
Size winSize; |
||||
CvFeatureParams *featureParams; |
||||
Mat cls; |
||||
}; |
||||
|
||||
class CvHaarFeatureParams : public CvFeatureParams |
||||
{ |
||||
public: |
||||
|
||||
CvHaarFeatureParams(); |
||||
|
||||
virtual void init( const CvFeatureParams& fp ); |
||||
virtual void write( FileStorage &fs ) const; |
||||
virtual bool read( const FileNode &node ); |
||||
|
||||
virtual void printDefaults() const; |
||||
virtual void printAttrs() const; |
||||
virtual bool scanAttr( const std::string prm, const std::string val ); |
||||
|
||||
bool isIntegral; |
||||
}; |
||||
|
||||
class CvHaarEvaluator : public CvFeatureEvaluator |
||||
{ |
||||
public: |
||||
|
||||
class FeatureHaar |
||||
{ |
||||
|
||||
public: |
||||
|
||||
FeatureHaar( Size patchSize ); |
||||
bool eval( const Mat& image, Rect ROI, float* result ) const; |
||||
int getNumAreas(); |
||||
const std::vector<float>& getWeights() const; |
||||
const std::vector<Rect>& getAreas() const; |
||||
void write( FileStorage ) const |
||||
{ |
||||
} |
||||
; |
||||
float getInitMean() const; |
||||
float getInitSigma() const; |
||||
|
||||
private: |
||||
int m_type; |
||||
int m_numAreas; |
||||
std::vector<float> m_weights; |
||||
float m_initMean; |
||||
float m_initSigma; |
||||
void generateRandomFeature( Size imageSize ); |
||||
float getSum( const Mat& image, Rect imgROI ) const; |
||||
std::vector<Rect> m_areas; // areas within the patch over which to compute the feature
|
||||
cv::Size m_initSize; // size of the patch used during training
|
||||
cv::Size m_curSize; // size of the patches currently under investigation
|
||||
float m_scaleFactorHeight; // scaling factor in vertical direction
|
||||
float m_scaleFactorWidth; // scaling factor in horizontal direction
|
||||
std::vector<Rect> m_scaleAreas; // areas after scaling
|
||||
std::vector<float> m_scaleWeights; // weights after scaling
|
||||
|
||||
}; |
||||
|
||||
virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize ); |
||||
virtual void setImage( const Mat& img, uchar clsLabel = 0, int idx = 1 ); |
||||
virtual float operator()( int featureIdx, int sampleIdx ); |
||||
virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const; |
||||
void writeFeature( FileStorage &fs ) const; // for old file format
|
||||
const std::vector<CvHaarEvaluator::FeatureHaar>& getFeatures() const; |
||||
inline CvHaarEvaluator::FeatureHaar& getFeatures( int idx ) |
||||
{ |
||||
return features[idx]; |
||||
} |
||||
void setWinSize( Size patchSize ); |
||||
Size setWinSize() const; |
||||
virtual void generateFeatures(); |
||||
|
||||
/**
|
||||
* TODO new method |
||||
* \brief Overload the original generateFeatures in order to limit the number of the features |
||||
* @param numFeatures Number of the features |
||||
*/ |
||||
|
||||
virtual void generateFeatures( int numFeatures ); |
||||
|
||||
protected: |
||||
bool isIntegral; |
||||
|
||||
/* TODO Added from MIL implementation */ |
||||
Mat _ii_img; |
||||
void compute_integral( const cv::Mat & img, std::vector<cv::Mat_<float> > & ii_imgs ) |
||||
{ |
||||
Mat ii_img; |
||||
integral( img, ii_img, CV_32F ); |
||||
split( ii_img, ii_imgs ); |
||||
} |
||||
|
||||
std::vector<FeatureHaar> features; |
||||
Mat sum; /* sum images (each row represents image) */ |
||||
}; |
||||
|
||||
struct CvHOGFeatureParams : public CvFeatureParams |
||||
{ |
||||
CvHOGFeatureParams(); |
||||
}; |
||||
|
||||
class CvHOGEvaluator : public CvFeatureEvaluator |
||||
{ |
||||
public: |
||||
virtual ~CvHOGEvaluator() |
||||
{ |
||||
} |
||||
virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize ); |
||||
virtual void setImage( const Mat& img, uchar clsLabel, int idx ); |
||||
virtual float operator()( int varIdx, int sampleIdx ); |
||||
virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const; |
||||
protected: |
||||
virtual void generateFeatures(); |
||||
virtual void integralHistogram( const Mat &img, std::vector<Mat> &histogram, Mat &norm, int nbins ) const; |
||||
class Feature |
||||
{ |
||||
public: |
||||
Feature(); |
||||
Feature( int offset, int x, int y, int cellW, int cellH ); |
||||
float calc( const std::vector<Mat> &_hists, const Mat &_normSum, size_t y, int featComponent ) const; |
||||
void write( FileStorage &fs ) const; |
||||
void write( FileStorage &fs, int varIdx ) const; |
||||
|
||||
Rect rect[N_CELLS]; //cells
|
||||
|
||||
struct
|
||||
{ |
||||
int p0, p1, p2, p3; |
||||
} fastRect[N_CELLS]; |
||||
}; |
||||
std::vector<Feature> features; |
||||
|
||||
Mat normSum; //for nomalization calculation (L1 or L2)
|
||||
std::vector<Mat> hist; |
||||
}; |
||||
|
||||
inline float CvHOGEvaluator::operator()( int varIdx, int sampleIdx ) |
||||
{ |
||||
int featureIdx = varIdx / ( N_BINS * N_CELLS ); |
||||
int componentIdx = varIdx % ( N_BINS * N_CELLS ); |
||||
//return features[featureIdx].calc( hist, sampleIdx, componentIdx);
|
||||
return features[featureIdx].calc( hist, normSum, sampleIdx, componentIdx ); |
||||
} |
||||
|
||||
inline float CvHOGEvaluator::Feature::calc( const std::vector<Mat>& _hists, const Mat& _normSum, size_t y, int featComponent ) const |
||||
{ |
||||
float normFactor; |
||||
float res; |
||||
|
||||
int binIdx = featComponent % N_BINS; |
||||
int cellIdx = featComponent / N_BINS; |
||||
|
||||
const float *phist = _hists[binIdx].ptr<float>( (int) y ); |
||||
res = phist[fastRect[cellIdx].p0] - phist[fastRect[cellIdx].p1] - phist[fastRect[cellIdx].p2] + phist[fastRect[cellIdx].p3]; |
||||
|
||||
const float *pnormSum = _normSum.ptr<float>( (int) y ); |
||||
normFactor = (float) ( pnormSum[fastRect[0].p0] - pnormSum[fastRect[1].p1] - pnormSum[fastRect[2].p2] + pnormSum[fastRect[3].p3] ); |
||||
res = ( res > 0.001f ) ? ( res / ( normFactor + 0.001f ) ) : 0.f; //for cutting negative values, which apper due to floating precision
|
||||
|
||||
return res; |
||||
} |
||||
|
||||
struct CvLBPFeatureParams : CvFeatureParams |
||||
{ |
||||
CvLBPFeatureParams(); |
||||
|
||||
}; |
||||
|
||||
class CvLBPEvaluator : public CvFeatureEvaluator |
||||
{ |
||||
public: |
||||
virtual ~CvLBPEvaluator() |
||||
{ |
||||
} |
||||
virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize ); |
||||
virtual void setImage( const Mat& img, uchar clsLabel, int idx ); |
||||
virtual float operator()( int featureIdx, int sampleIdx ) |
||||
{ |
||||
return (float) features[featureIdx].calc( sum, sampleIdx ); |
||||
} |
||||
virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const; |
||||
protected: |
||||
virtual void generateFeatures(); |
||||
|
||||
class Feature |
||||
{ |
||||
public: |
||||
Feature(); |
||||
Feature( int offset, int x, int y, int _block_w, int _block_h ); |
||||
uchar calc( const Mat& _sum, size_t y ) const; |
||||
void write( FileStorage &fs ) const; |
||||
|
||||
Rect rect; |
||||
int p[16]; |
||||
}; |
||||
std::vector<Feature> features; |
||||
|
||||
Mat sum; |
||||
}; |
||||
|
||||
inline uchar CvLBPEvaluator::Feature::calc( const Mat &_sum, size_t y ) const |
||||
{ |
||||
const int* psum = _sum.ptr<int>( (int) y ); |
||||
int cval = psum[p[5]] - psum[p[6]] - psum[p[9]] + psum[p[10]]; |
||||
|
||||
return (uchar) ( ( psum[p[0]] - psum[p[1]] - psum[p[4]] + psum[p[5]] >= cval ? 128 : 0 ) | // 0
|
||||
( psum[p[1]] - psum[p[2]] - psum[p[5]] + psum[p[6]] >= cval ? 64 : 0 ) | // 1
|
||||
( psum[p[2]] - psum[p[3]] - psum[p[6]] + psum[p[7]] >= cval ? 32 : 0 ) | // 2
|
||||
( psum[p[6]] - psum[p[7]] - psum[p[10]] + psum[p[11]] >= cval ? 16 : 0 ) | // 5
|
||||
( psum[p[10]] - psum[p[11]] - psum[p[14]] + psum[p[15]] >= cval ? 8 : 0 ) | // 8
|
||||
( psum[p[9]] - psum[p[10]] - psum[p[13]] + psum[p[14]] >= cval ? 4 : 0 ) | // 7
|
||||
( psum[p[8]] - psum[p[9]] - psum[p[12]] + psum[p[13]] >= cval ? 2 : 0 ) | // 6
|
||||
( psum[p[4]] - psum[p[5]] - psum[p[8]] + psum[p[9]] >= cval ? 1 : 0 ) ); // 3
|
||||
} |
||||
|
||||
} /* namespace cv */ |
||||
|
||||
#endif |
@ -0,0 +1,282 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_ONLINEBOOSTING_HPP__ |
||||
#define __OPENCV_ONLINEBOOSTING_HPP__ |
||||
|
||||
#include "opencv2/core.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
//TODO based on the original implementation
|
||||
//http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
|
||||
|
||||
class BaseClassifier; |
||||
class WeakClassifierHaarFeature; |
||||
class EstimatedGaussDistribution; |
||||
class ClassifierThreshold; |
||||
class Detector; |
||||
|
||||
class StrongClassifierDirectSelection |
||||
{ |
||||
public: |
||||
|
||||
StrongClassifierDirectSelection( int numBaseClf, int numWeakClf, Size patchSz, const Rect& sampleROI, bool useFeatureEx = false, int iterationInit = |
||||
0 ); |
||||
virtual ~StrongClassifierDirectSelection(); |
||||
|
||||
void initBaseClassifier(); |
||||
|
||||
bool update( const Mat& image, int target, float importance = 1.0 ); |
||||
float eval( const Mat& response ); |
||||
std::vector<int> getSelectedWeakClassifier(); |
||||
float classifySmooth( const std::vector<Mat>& images, const Rect& sampleROI, int& idx ); |
||||
int getNumBaseClassifier(); |
||||
Size getPatchSize() const; |
||||
Rect getROI() const; |
||||
bool getUseFeatureExchange() const; |
||||
int getReplacedClassifier() const; |
||||
|
||||
void replaceWeakClassifier( int idx ); |
||||
int getSwappedClassifier() const; |
||||
private: |
||||
|
||||
//StrongClassifier
|
||||
int numBaseClassifier; |
||||
int numAllWeakClassifier; |
||||
int numWeakClassifier; |
||||
int iterInit; |
||||
BaseClassifier** baseClassifier; |
||||
std::vector<float> alpha; |
||||
cv::Size patchSize; |
||||
|
||||
bool useFeatureExchange; |
||||
|
||||
//StrongClassifierDirectSelection
|
||||
std::vector<bool> m_errorMask; |
||||
std::vector<float> m_errors; |
||||
std::vector<float> m_sumErrors; |
||||
|
||||
Detector* detector; |
||||
Rect ROI; |
||||
|
||||
int replacedClassifier; |
||||
int swappedClassifier; |
||||
}; |
||||
|
||||
class BaseClassifier |
||||
{ |
||||
public: |
||||
|
||||
BaseClassifier( int numWeakClassifier, int iterationInit ); |
||||
BaseClassifier( int numWeakClassifier, int iterationInit, WeakClassifierHaarFeature** weakCls ); |
||||
|
||||
WeakClassifierHaarFeature** getReferenceWeakClassifier() |
||||
{ |
||||
return weakClassifier; |
||||
} |
||||
; |
||||
void trainClassifier( const Mat& image, int target, float importance, std::vector<bool>& errorMask ); |
||||
int selectBestClassifier( std::vector<bool>& errorMask, float importance, std::vector<float> & errors ); |
||||
int computeReplaceWeakestClassifier( const std::vector<float> & errors ); |
||||
void replaceClassifierStatistic( int sourceIndex, int targetIndex ); |
||||
int getIdxOfNewWeakClassifier() |
||||
{ |
||||
return m_idxOfNewWeakClassifier; |
||||
} |
||||
; |
||||
int eval( const Mat& image ); |
||||
virtual ~BaseClassifier(); |
||||
float getError( int curWeakClassifier ); |
||||
void getErrors( float* errors ); |
||||
int getSelectedClassifier() const; |
||||
void replaceWeakClassifier( int index ); |
||||
|
||||
protected: |
||||
|
||||
void generateRandomClassifier(); |
||||
WeakClassifierHaarFeature** weakClassifier; |
||||
bool m_referenceWeakClassifier; |
||||
int m_numWeakClassifier; |
||||
int m_selectedClassifier; |
||||
int m_idxOfNewWeakClassifier; |
||||
std::vector<float> m_wCorrect; |
||||
std::vector<float> m_wWrong; |
||||
int m_iterationInit; |
||||
|
||||
}; |
||||
|
||||
class EstimatedGaussDistribution |
||||
{ |
||||
public: |
||||
|
||||
EstimatedGaussDistribution(); |
||||
EstimatedGaussDistribution( float P_mean, float R_mean, float P_sigma, float R_sigma ); |
||||
virtual ~EstimatedGaussDistribution(); |
||||
void update( float value ); //, float timeConstant = -1.0);
|
||||
float getMean(); |
||||
float getSigma(); |
||||
void setValues( float mean, float sigma ); |
||||
|
||||
private: |
||||
|
||||
float m_mean; |
||||
float m_sigma; |
||||
float m_P_mean; |
||||
float m_P_sigma; |
||||
float m_R_mean; |
||||
float m_R_sigma; |
||||
}; |
||||
|
||||
class WeakClassifierHaarFeature |
||||
{ |
||||
|
||||
public: |
||||
|
||||
WeakClassifierHaarFeature(); |
||||
virtual ~WeakClassifierHaarFeature(); |
||||
|
||||
bool update( float value, int target ); |
||||
int eval( float value ); |
||||
|
||||
private: |
||||
|
||||
float sigma; |
||||
float mean; |
||||
ClassifierThreshold* m_classifier; |
||||
|
||||
void getInitialDistribution( EstimatedGaussDistribution *distribution ); |
||||
void generateRandomClassifier( EstimatedGaussDistribution* m_posSamples, EstimatedGaussDistribution* m_negSamples ); |
||||
|
||||
}; |
||||
|
||||
class Detector |
||||
{ |
||||
public: |
||||
|
||||
Detector( StrongClassifierDirectSelection* classifier ); |
||||
virtual |
||||
~Detector( void ); |
||||
|
||||
void |
||||
classifySmooth( const std::vector<Mat>& image, float minMargin = 0 ); |
||||
|
||||
int |
||||
getNumDetections(); |
||||
float |
||||
getConfidence( int patchIdx ); |
||||
float |
||||
getConfidenceOfDetection( int detectionIdx ); |
||||
|
||||
float getConfidenceOfBestDetection() |
||||
{ |
||||
return m_maxConfidence; |
||||
} |
||||
; |
||||
int |
||||
getPatchIdxOfBestDetection(); |
||||
|
||||
int |
||||
getPatchIdxOfDetection( int detectionIdx ); |
||||
|
||||
const std::vector<int> & |
||||
getIdxDetections() const |
||||
{ |
||||
return m_idxDetections; |
||||
} |
||||
; |
||||
const std::vector<float> & |
||||
getConfidences() const |
||||
{ |
||||
return m_confidences; |
||||
} |
||||
; |
||||
|
||||
const cv::Mat & |
||||
getConfImageDisplay() const |
||||
{ |
||||
return m_confImageDisplay; |
||||
} |
||||
|
||||
private: |
||||
|
||||
void |
||||
prepareConfidencesMemory( int numPatches ); |
||||
void |
||||
prepareDetectionsMemory( int numDetections ); |
||||
|
||||
StrongClassifierDirectSelection* m_classifier; |
||||
std::vector<float> m_confidences; |
||||
int m_sizeConfidences; |
||||
int m_numDetections; |
||||
std::vector<int> m_idxDetections; |
||||
int m_sizeDetections; |
||||
int m_idxBestDetection; |
||||
float m_maxConfidence; |
||||
cv::Mat_<float> m_confMatrix; |
||||
cv::Mat_<float> m_confMatrixSmooth; |
||||
cv::Mat_<unsigned char> m_confImageDisplay; |
||||
}; |
||||
|
||||
class ClassifierThreshold |
||||
{ |
||||
public: |
||||
|
||||
ClassifierThreshold( EstimatedGaussDistribution* posSamples, EstimatedGaussDistribution* negSamples ); |
||||
virtual ~ClassifierThreshold(); |
||||
|
||||
void update( float value, int target ); |
||||
int eval( float value ); |
||||
|
||||
void* getDistribution( int target ); |
||||
|
||||
private: |
||||
|
||||
EstimatedGaussDistribution* m_posSamples; |
||||
EstimatedGaussDistribution* m_negSamples; |
||||
|
||||
float m_threshold; |
||||
int m_parity; |
||||
}; |
||||
|
||||
} /* namespace cv */ |
||||
|
||||
#endif |
@ -0,0 +1,114 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_ONLINEMIL_HPP__ |
||||
#define __OPENCV_ONLINEMIL_HPP__ |
||||
|
||||
#include "opencv2/core.hpp" |
||||
#include <limits> |
||||
|
||||
namespace cv |
||||
{ |
||||
//TODO based on the original implementation
|
||||
//http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
|
||||
|
||||
#define sign(s) ((s > 0 ) ? 1 : ((s<0) ? -1 : 0)) |
||||
|
||||
class ClfOnlineStump; |
||||
|
||||
class ClfMilBoost |
||||
{ |
||||
public: |
||||
struct CV_EXPORTS Params |
||||
{ |
||||
Params(); |
||||
int _numSel; |
||||
int _numFeat; |
||||
float _lRate; |
||||
}; |
||||
|
||||
ClfMilBoost(); |
||||
~ClfMilBoost(); |
||||
void init( const ClfMilBoost::Params ¶meters = ClfMilBoost::Params() ); |
||||
void update( const Mat& posx, const Mat& negx ); |
||||
std::vector<float> classify( const Mat& x, bool logR = true ); |
||||
|
||||
inline float sigmoid( float x ) |
||||
{ |
||||
return 1.0f / ( 1.0f + exp( -x ) ); |
||||
} |
||||
|
||||
private: |
||||
uint _numsamples; |
||||
ClfMilBoost::Params _myParams; |
||||
std::vector<int> _selectors; |
||||
std::vector<ClfOnlineStump*> _weakclf; |
||||
uint _counter; |
||||
|
||||
}; |
||||
|
||||
class ClfOnlineStump |
||||
{ |
||||
public: |
||||
float _mu0, _mu1, _sig0, _sig1; |
||||
float _q; |
||||
int _s; |
||||
float _log_n1, _log_n0; |
||||
float _e1, _e0; |
||||
float _lRate; |
||||
|
||||
ClfOnlineStump(); |
||||
ClfOnlineStump( int ind ); |
||||
void init(); |
||||
void update( const Mat& posx, const Mat& negx, const cv::Mat_<float> & posw = cv::Mat_<float>(), const cv::Mat_<float> & negw = cv::Mat_<float>() ); |
||||
bool classify( const Mat& x, int i ); |
||||
float classifyF( const Mat& x, int i ); |
||||
std::vector<float> classifySetF( const Mat& x ); |
||||
|
||||
private: |
||||
bool _trained; |
||||
int _ind; |
||||
|
||||
}; |
||||
|
||||
} /* namespace cv */ |
||||
|
||||
#endif |
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,46 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifdef __OPENCV_BUILD |
||||
#error this is a compatibility header which should not be used inside the OpenCV library |
||||
#endif |
||||
|
||||
#include "opencv2/tracking.hpp" |
@ -0,0 +1,3 @@ |
||||
#include "perf_precomp.hpp" |
||||
|
||||
CV_PERF_TEST_MAIN(tracking) |
@ -0,0 +1,21 @@ |
||||
#ifdef __GNUC__ |
||||
# pragma GCC diagnostic ignored "-Wmissing-declarations" |
||||
# if defined __clang__ || defined __APPLE__ |
||||
# pragma GCC diagnostic ignored "-Wmissing-prototypes" |
||||
# pragma GCC diagnostic ignored "-Wextra" |
||||
# endif |
||||
#endif |
||||
|
||||
#ifndef __OPENCV_TRACKING_PRECOMP_HPP__ |
||||
#define __OPENCV_TRACKING_PRECOMP_HPP__ |
||||
|
||||
#include "opencv2/ts.hpp" |
||||
#include <opencv2/imgproc.hpp> |
||||
#include <opencv2/tracking.hpp> |
||||
#include <opencv2/highgui.hpp> |
||||
|
||||
#ifdef GTEST_CREATE_SHARED_LIBRARY |
||||
#error no modules except ts should have GTEST_CREATE_SHARED_LIBRARY defined |
||||
#endif |
||||
|
||||
#endif |
@ -0,0 +1,46 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp" |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
using namespace perf; |
@ -0,0 +1,148 @@ |
||||
#include <opencv2/core/utility.hpp> |
||||
#include <opencv2/tracking.hpp> |
||||
#include <opencv2/highgui.hpp> |
||||
#include <iostream> |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
|
||||
static Mat image; |
||||
static Rect boundingBox; |
||||
static bool paused; |
||||
static bool selectObject = false; |
||||
static bool startSelection = false; |
||||
|
||||
static const char* keys = |
||||
{ "{@tracker_algorithm | | tracker algorithm }" |
||||
"{@video_name | | video name }" }; |
||||
|
||||
static void help() |
||||
{ |
||||
cout << "\nThis example shows the functionality of \"Long-term optical tracking API\"" |
||||
"-- pause video [p] and draw a bounding box around the target to start the tracker\n" |
||||
"Call:\n" |
||||
"./tracker <tracker_algorithm> <video_name>\n" |
||||
<< endl; |
||||
|
||||
cout << "\n\nHot keys: \n" |
||||
"\tq - quit the program\n" |
||||
"\tp - pause video\n"; |
||||
} |
||||
|
||||
static void onMouse( int event, int x, int y, int, void* ) |
||||
{ |
||||
if( !selectObject ) |
||||
{ |
||||
switch ( event ) |
||||
{ |
||||
case EVENT_LBUTTONDOWN: |
||||
//set origin of the bounding box
|
||||
startSelection = true; |
||||
boundingBox.x = x; |
||||
boundingBox.y = y; |
||||
break; |
||||
case EVENT_LBUTTONUP: |
||||
//sei with and height of the bounding box
|
||||
boundingBox.width = std::abs( x - boundingBox.x ); |
||||
boundingBox.height = std::abs( y - boundingBox.y ); |
||||
paused = false; |
||||
selectObject = true; |
||||
break; |
||||
case EVENT_MOUSEMOVE: |
||||
|
||||
if( startSelection && !selectObject ) |
||||
{ |
||||
//draw the bounding box
|
||||
Mat currentFrame; |
||||
image.copyTo( currentFrame ); |
||||
rectangle( currentFrame, Point( boundingBox.x, boundingBox.y ), Point( x, y ), Scalar( 255, 0, 0 ), 2, 1 ); |
||||
imshow( "Tracking API", currentFrame ); |
||||
} |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
|
||||
int main( int argc, char** argv ) |
||||
{ |
||||
CommandLineParser parser( argc, argv, keys ); |
||||
|
||||
String tracker_algorithm = parser.get<String>( 0 ); |
||||
String video_name = parser.get<String>( 1 ); |
||||
|
||||
if( tracker_algorithm.empty() || video_name.empty() ) |
||||
{ |
||||
help(); |
||||
return -1; |
||||
} |
||||
|
||||
//open the capture
|
||||
VideoCapture cap; |
||||
cap.open( video_name ); |
||||
|
||||
if( !cap.isOpened() ) |
||||
{ |
||||
help(); |
||||
cout << "***Could not initialize capturing...***\n"; |
||||
cout << "Current parameter's value: \n"; |
||||
parser.printMessage(); |
||||
return -1; |
||||
} |
||||
|
||||
Mat frame; |
||||
paused = true; |
||||
namedWindow( "Tracking API", 1 ); |
||||
setMouseCallback( "Tracking API", onMouse, 0 ); |
||||
|
||||
//instantiates the specific Tracker
|
||||
Ptr<Tracker> tracker = Tracker::create( tracker_algorithm ); |
||||
if( tracker == NULL ) |
||||
{ |
||||
cout << "***Error in the instantiation of the tracker...***\n"; |
||||
return -1; |
||||
} |
||||
|
||||
//get the first frame
|
||||
cap >> frame; |
||||
frame.copyTo( image ); |
||||
imshow( "Tracking API", image ); |
||||
|
||||
bool initialized = false; |
||||
for ( ;; ) |
||||
{ |
||||
if( !paused ) |
||||
{ |
||||
cap >> frame; |
||||
frame.copyTo( image ); |
||||
|
||||
if( !initialized && selectObject ) |
||||
{ |
||||
//initializes the tracker
|
||||
if( !tracker->init( frame, boundingBox ) ) |
||||
{ |
||||
cout << "***Could not initialize tracker...***\n"; |
||||
return -1; |
||||
} |
||||
initialized = true; |
||||
} |
||||
else if( initialized ) |
||||
{ |
||||
//updates the tracker
|
||||
if( tracker->update( frame, boundingBox ) ) |
||||
{ |
||||
rectangle( image, boundingBox, Scalar( 255, 0, 0 ), 2, 1 ); |
||||
} |
||||
} |
||||
imshow( "Tracking API", image ); |
||||
} |
||||
|
||||
char c = (char) waitKey( 2 ); |
||||
if( c == 'q' ) |
||||
break; |
||||
if( c == 'p' ) |
||||
paused = !paused; |
||||
|
||||
} |
||||
|
||||
return 0; |
||||
} |
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,735 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
#include "opencv2/tracking/onlineBoosting.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
StrongClassifierDirectSelection::StrongClassifierDirectSelection( int numBaseClf, int numWeakClf, Size patchSz, const Rect& sampleROI, |
||||
bool useFeatureEx, int iterationInit ) |
||||
{ |
||||
//StrongClassifier
|
||||
numBaseClassifier = numBaseClf; |
||||
numAllWeakClassifier = numWeakClf + iterationInit; |
||||
iterInit = iterationInit; |
||||
numWeakClassifier = numWeakClf; |
||||
|
||||
alpha.assign( numBaseClf, 0 ); |
||||
|
||||
patchSize = patchSz; |
||||
useFeatureExchange = useFeatureEx; |
||||
|
||||
m_errorMask.resize( numAllWeakClassifier ); |
||||
m_errors.resize( numAllWeakClassifier ); |
||||
m_sumErrors.resize( numAllWeakClassifier ); |
||||
|
||||
ROI = sampleROI; |
||||
detector = new Detector( this ); |
||||
} |
||||
|
||||
void StrongClassifierDirectSelection::initBaseClassifier() |
||||
{ |
||||
baseClassifier = new BaseClassifier*[numBaseClassifier]; |
||||
baseClassifier[0] = new BaseClassifier( numWeakClassifier, iterInit ); |
||||
|
||||
for ( int curBaseClassifier = 1; curBaseClassifier < numBaseClassifier; curBaseClassifier++ ) |
||||
baseClassifier[curBaseClassifier] = new BaseClassifier( numWeakClassifier, iterInit, baseClassifier[0]->getReferenceWeakClassifier() ); |
||||
} |
||||
|
||||
StrongClassifierDirectSelection::~StrongClassifierDirectSelection() |
||||
{ |
||||
for ( int curBaseClassifier = 0; curBaseClassifier < numBaseClassifier; curBaseClassifier++ ) |
||||
delete baseClassifier[curBaseClassifier]; |
||||
delete[] baseClassifier; |
||||
alpha.clear(); |
||||
delete detector; |
||||
} |
||||
|
||||
Size StrongClassifierDirectSelection::getPatchSize() const |
||||
{ |
||||
return patchSize; |
||||
} |
||||
|
||||
Rect StrongClassifierDirectSelection::getROI() const |
||||
{ |
||||
return ROI; |
||||
} |
||||
|
||||
float StrongClassifierDirectSelection::classifySmooth( const std::vector<Mat>& images, const Rect& sampleROI, int& idx ) |
||||
{ |
||||
ROI = sampleROI; |
||||
idx = 0; |
||||
float confidence = 0; |
||||
//detector->classify (image, patches);
|
||||
detector->classifySmooth( images ); |
||||
|
||||
//move to best detection
|
||||
if( detector->getNumDetections() <= 0 ) |
||||
{ |
||||
confidence = 0; |
||||
return confidence; |
||||
} |
||||
idx = detector->getPatchIdxOfBestDetection(); |
||||
confidence = detector->getConfidenceOfBestDetection(); |
||||
|
||||
return confidence; |
||||
} |
||||
|
||||
bool StrongClassifierDirectSelection::getUseFeatureExchange() const |
||||
{ |
||||
return useFeatureExchange; |
||||
} |
||||
|
||||
int StrongClassifierDirectSelection::getReplacedClassifier() const |
||||
{ |
||||
return replacedClassifier; |
||||
} |
||||
|
||||
int StrongClassifierDirectSelection::getSwappedClassifier() const |
||||
{ |
||||
return swappedClassifier; |
||||
} |
||||
|
||||
bool StrongClassifierDirectSelection::update( const Mat& image, int target, float importance ) |
||||
{ |
||||
m_errorMask.assign( numAllWeakClassifier, 0 ); |
||||
m_errors.assign( numAllWeakClassifier, 0 ); |
||||
m_sumErrors.assign( numAllWeakClassifier, 0 ); |
||||
|
||||
baseClassifier[0]->trainClassifier( image, target, importance, m_errorMask ); |
||||
for ( int curBaseClassifier = 0; curBaseClassifier < numBaseClassifier; curBaseClassifier++ ) |
||||
{ |
||||
int selectedClassifier = baseClassifier[curBaseClassifier]->selectBestClassifier( m_errorMask, importance, m_errors ); |
||||
|
||||
if( m_errors[selectedClassifier] >= 0.5 ) |
||||
alpha[curBaseClassifier] = 0; |
||||
else |
||||
alpha[curBaseClassifier] = logf( ( 1.0f - m_errors[selectedClassifier] ) / m_errors[selectedClassifier] ); |
||||
|
||||
if( m_errorMask[selectedClassifier] ) |
||||
importance *= (float) sqrt( ( 1.0f - m_errors[selectedClassifier] ) / m_errors[selectedClassifier] ); |
||||
else |
||||
importance *= (float) sqrt( m_errors[selectedClassifier] / ( 1.0f - m_errors[selectedClassifier] ) ); |
||||
|
||||
//weight limitation
|
||||
//if (importance > 100) importance = 100;
|
||||
|
||||
//sum up errors
|
||||
for ( int curWeakClassifier = 0; curWeakClassifier < numAllWeakClassifier; curWeakClassifier++ ) |
||||
{ |
||||
if( m_errors[curWeakClassifier] != FLT_MAX && m_sumErrors[curWeakClassifier] >= 0 ) |
||||
m_sumErrors[curWeakClassifier] += m_errors[curWeakClassifier]; |
||||
} |
||||
|
||||
//mark feature as used
|
||||
m_sumErrors[selectedClassifier] = -1; |
||||
m_errors[selectedClassifier] = FLT_MAX; |
||||
} |
||||
|
||||
if( useFeatureExchange ) |
||||
{ |
||||
replacedClassifier = baseClassifier[0]->computeReplaceWeakestClassifier( m_sumErrors ); |
||||
swappedClassifier = baseClassifier[0]->getIdxOfNewWeakClassifier(); |
||||
} |
||||
|
||||
return true; |
||||
} |
||||
|
||||
void StrongClassifierDirectSelection::replaceWeakClassifier( int idx ) |
||||
{ |
||||
if( useFeatureExchange && idx >= 0 ) |
||||
{ |
||||
baseClassifier[0]->replaceWeakClassifier( idx ); |
||||
for ( int curBaseClassifier = 1; curBaseClassifier < numBaseClassifier; curBaseClassifier++ ) |
||||
baseClassifier[curBaseClassifier]->replaceClassifierStatistic( baseClassifier[0]->getIdxOfNewWeakClassifier(), idx ); |
||||
} |
||||
} |
||||
|
||||
std::vector<int> StrongClassifierDirectSelection::getSelectedWeakClassifier() |
||||
{ |
||||
std::vector<int> selected; |
||||
int curBaseClassifier = 0; |
||||
for ( curBaseClassifier = 0; curBaseClassifier < numBaseClassifier; curBaseClassifier++ ) |
||||
{ |
||||
selected.push_back( baseClassifier[curBaseClassifier]->getSelectedClassifier() ); |
||||
} |
||||
return selected; |
||||
} |
||||
|
||||
float StrongClassifierDirectSelection::eval( const Mat& response ) |
||||
{ |
||||
float value = 0.0f; |
||||
int curBaseClassifier = 0; |
||||
|
||||
for ( curBaseClassifier = 0; curBaseClassifier < numBaseClassifier; curBaseClassifier++ ) |
||||
value += baseClassifier[curBaseClassifier]->eval( response ) * alpha[curBaseClassifier]; |
||||
|
||||
return value; |
||||
} |
||||
|
||||
int StrongClassifierDirectSelection::getNumBaseClassifier() |
||||
{ |
||||
return numBaseClassifier; |
||||
} |
||||
|
||||
BaseClassifier::BaseClassifier( int numWeakClassifier, int iterationInit ) |
||||
{ |
||||
this->m_numWeakClassifier = numWeakClassifier; |
||||
this->m_iterationInit = iterationInit; |
||||
|
||||
weakClassifier = new WeakClassifierHaarFeature*[numWeakClassifier + iterationInit]; |
||||
m_idxOfNewWeakClassifier = numWeakClassifier; |
||||
|
||||
generateRandomClassifier(); |
||||
|
||||
m_referenceWeakClassifier = false; |
||||
m_selectedClassifier = 0; |
||||
|
||||
m_wCorrect.assign( numWeakClassifier + iterationInit, 0 ); |
||||
|
||||
m_wWrong.assign( numWeakClassifier + iterationInit, 0 ); |
||||
|
||||
for ( int curWeakClassifier = 0; curWeakClassifier < numWeakClassifier + iterationInit; curWeakClassifier++ ) |
||||
m_wWrong[curWeakClassifier] = m_wCorrect[curWeakClassifier] = 1; |
||||
} |
||||
|
||||
BaseClassifier::BaseClassifier( int numWeakClassifier, int iterationInit, WeakClassifierHaarFeature** weakCls ) |
||||
{ |
||||
m_numWeakClassifier = numWeakClassifier; |
||||
m_iterationInit = iterationInit; |
||||
weakClassifier = weakCls; |
||||
m_referenceWeakClassifier = true; |
||||
m_selectedClassifier = 0; |
||||
m_idxOfNewWeakClassifier = numWeakClassifier; |
||||
|
||||
m_wCorrect.assign( numWeakClassifier + iterationInit, 0 ); |
||||
m_wWrong.assign( numWeakClassifier + iterationInit, 0 ); |
||||
|
||||
for ( int curWeakClassifier = 0; curWeakClassifier < numWeakClassifier + iterationInit; curWeakClassifier++ ) |
||||
m_wWrong[curWeakClassifier] = m_wCorrect[curWeakClassifier] = 1; |
||||
} |
||||
|
||||
BaseClassifier::~BaseClassifier() |
||||
{ |
||||
if( !m_referenceWeakClassifier ) |
||||
{ |
||||
for ( int curWeakClassifier = 0; curWeakClassifier < m_numWeakClassifier + m_iterationInit; curWeakClassifier++ ) |
||||
delete weakClassifier[curWeakClassifier]; |
||||
|
||||
delete[] weakClassifier; |
||||
} |
||||
m_wCorrect.clear(); |
||||
m_wWrong.clear(); |
||||
} |
||||
|
||||
void BaseClassifier::generateRandomClassifier() |
||||
{ |
||||
for ( int curWeakClassifier = 0; curWeakClassifier < m_numWeakClassifier + m_iterationInit; curWeakClassifier++ ) |
||||
{ |
||||
weakClassifier[curWeakClassifier] = new WeakClassifierHaarFeature(); |
||||
} |
||||
} |
||||
|
||||
int BaseClassifier::eval( const Mat& image ) |
||||
{ |
||||
return weakClassifier[m_selectedClassifier]->eval( image.at<float>( m_selectedClassifier ) ); |
||||
} |
||||
|
||||
int BaseClassifier::getSelectedClassifier() const |
||||
{ |
||||
return m_selectedClassifier; |
||||
} |
||||
|
||||
void BaseClassifier::trainClassifier( const Mat& image, int target, float importance, std::vector<bool>& errorMask ) |
||||
{ |
||||
|
||||
//get poisson value
|
||||
double A = 1; |
||||
int K = 0; |
||||
int K_max = 10; |
||||
while ( 1 ) |
||||
{ |
||||
double U_k = (double) rand() / RAND_MAX; |
||||
A *= U_k; |
||||
if( K > K_max || A < exp( -importance ) ) |
||||
break; |
||||
K++; |
||||
} |
||||
|
||||
for ( int curK = 0; curK <= K; curK++ ) |
||||
{ |
||||
for ( int curWeakClassifier = 0; curWeakClassifier < m_numWeakClassifier + m_iterationInit; curWeakClassifier++ ) |
||||
{ |
||||
errorMask[curWeakClassifier] = weakClassifier[curWeakClassifier]->update( image.at<float>( curWeakClassifier ), target ); |
||||
} |
||||
} |
||||
|
||||
} |
||||
|
||||
float BaseClassifier::getError( int curWeakClassifier ) |
||||
{ |
||||
if( curWeakClassifier == -1 ) |
||||
curWeakClassifier = m_selectedClassifier; |
||||
return m_wWrong[curWeakClassifier] / ( m_wWrong[curWeakClassifier] + m_wCorrect[curWeakClassifier] ); |
||||
} |
||||
|
||||
int BaseClassifier::selectBestClassifier( std::vector<bool>& errorMask, float importance, std::vector<float> & errors ) |
||||
{ |
||||
float minError = FLT_MAX; |
||||
int tmp_selectedClassifier = m_selectedClassifier; |
||||
|
||||
for ( int curWeakClassifier = 0; curWeakClassifier < m_numWeakClassifier + m_iterationInit; curWeakClassifier++ ) |
||||
{ |
||||
if( errorMask[curWeakClassifier] ) |
||||
{ |
||||
m_wWrong[curWeakClassifier] += importance; |
||||
} |
||||
else |
||||
{ |
||||
m_wCorrect[curWeakClassifier] += importance; |
||||
} |
||||
|
||||
if( errors[curWeakClassifier] == FLT_MAX ) |
||||
continue; |
||||
|
||||
errors[curWeakClassifier] = m_wWrong[curWeakClassifier] / ( m_wWrong[curWeakClassifier] + m_wCorrect[curWeakClassifier] ); |
||||
|
||||
/*if(errors[curWeakClassifier] < 0.001 || !(errors[curWeakClassifier]>0.0))
|
||||
{ |
||||
errors[curWeakClassifier] = 0.001; |
||||
} |
||||
|
||||
if(errors[curWeakClassifier] >= 1.0) |
||||
errors[curWeakClassifier] = 0.999; |
||||
|
||||
assert (errors[curWeakClassifier] > 0.0); |
||||
assert (errors[curWeakClassifier] < 1.0);*/ |
||||
|
||||
if( curWeakClassifier < m_numWeakClassifier ) |
||||
{ |
||||
if( errors[curWeakClassifier] < minError ) |
||||
{ |
||||
minError = errors[curWeakClassifier]; |
||||
tmp_selectedClassifier = curWeakClassifier; |
||||
} |
||||
} |
||||
} |
||||
|
||||
m_selectedClassifier = tmp_selectedClassifier; |
||||
return m_selectedClassifier; |
||||
} |
||||
|
||||
void BaseClassifier::getErrors( float* errors ) |
||||
{ |
||||
for ( int curWeakClassifier = 0; curWeakClassifier < m_numWeakClassifier + m_iterationInit; curWeakClassifier++ ) |
||||
{ |
||||
if( errors[curWeakClassifier] == FLT_MAX ) |
||||
continue; |
||||
|
||||
errors[curWeakClassifier] = m_wWrong[curWeakClassifier] / ( m_wWrong[curWeakClassifier] + m_wCorrect[curWeakClassifier] ); |
||||
|
||||
CV_Assert( errors[curWeakClassifier] > 0 ); |
||||
} |
||||
} |
||||
|
||||
void BaseClassifier::replaceWeakClassifier( int index ) |
||||
{ |
||||
delete weakClassifier[index]; |
||||
weakClassifier[index] = weakClassifier[m_idxOfNewWeakClassifier]; |
||||
m_wWrong[index] = m_wWrong[m_idxOfNewWeakClassifier]; |
||||
m_wWrong[m_idxOfNewWeakClassifier] = 1; |
||||
m_wCorrect[index] = m_wCorrect[m_idxOfNewWeakClassifier]; |
||||
m_wCorrect[m_idxOfNewWeakClassifier] = 1; |
||||
|
||||
weakClassifier[m_idxOfNewWeakClassifier] = new WeakClassifierHaarFeature(); |
||||
} |
||||
|
||||
int BaseClassifier::computeReplaceWeakestClassifier( const std::vector<float> & errors ) |
||||
{ |
||||
float maxError = 0.0f; |
||||
int index = -1; |
||||
|
||||
//search the classifier with the largest error
|
||||
for ( int curWeakClassifier = m_numWeakClassifier - 1; curWeakClassifier >= 0; curWeakClassifier-- ) |
||||
{ |
||||
if( errors[curWeakClassifier] > maxError ) |
||||
{ |
||||
maxError = errors[curWeakClassifier]; |
||||
index = curWeakClassifier; |
||||
} |
||||
} |
||||
|
||||
CV_Assert( index > -1 ); |
||||
CV_Assert( index != m_selectedClassifier ); |
||||
|
||||
//replace
|
||||
m_idxOfNewWeakClassifier++; |
||||
if( m_idxOfNewWeakClassifier == m_numWeakClassifier + m_iterationInit ) |
||||
m_idxOfNewWeakClassifier = m_numWeakClassifier; |
||||
|
||||
if( maxError > errors[m_idxOfNewWeakClassifier] ) |
||||
{ |
||||
return index; |
||||
} |
||||
else |
||||
return -1; |
||||
|
||||
} |
||||
|
||||
void BaseClassifier::replaceClassifierStatistic( int sourceIndex, int targetIndex ) |
||||
{ |
||||
CV_Assert( targetIndex >= 0 ); |
||||
CV_Assert( targetIndex != m_selectedClassifier ); |
||||
CV_Assert( targetIndex < m_numWeakClassifier ); |
||||
|
||||
//replace
|
||||
m_wWrong[targetIndex] = m_wWrong[sourceIndex]; |
||||
m_wWrong[sourceIndex] = 1.0f; |
||||
m_wCorrect[targetIndex] = m_wCorrect[sourceIndex]; |
||||
m_wCorrect[sourceIndex] = 1.0f; |
||||
} |
||||
|
||||
EstimatedGaussDistribution::EstimatedGaussDistribution() |
||||
{ |
||||
m_mean = 0; |
||||
m_sigma = 1; |
||||
this->m_P_mean = 1000; |
||||
this->m_R_mean = 0.01f; |
||||
this->m_P_sigma = 1000; |
||||
this->m_R_sigma = 0.01f; |
||||
} |
||||
|
||||
EstimatedGaussDistribution::EstimatedGaussDistribution( float P_mean, float R_mean, float P_sigma, float R_sigma ) |
||||
{ |
||||
m_mean = 0; |
||||
m_sigma = 1; |
||||
this->m_P_mean = P_mean; |
||||
this->m_R_mean = R_mean; |
||||
this->m_P_sigma = P_sigma; |
||||
this->m_R_sigma = R_sigma; |
||||
} |
||||
|
||||
EstimatedGaussDistribution::~EstimatedGaussDistribution() |
||||
{ |
||||
} |
||||
|
||||
void EstimatedGaussDistribution::update( float value ) |
||||
{ |
||||
//update distribution (mean and sigma) using a kalman filter for each
|
||||
|
||||
float K; |
||||
float minFactor = 0.001f; |
||||
|
||||
//mean
|
||||
|
||||
K = m_P_mean / ( m_P_mean + m_R_mean ); |
||||
if( K < minFactor ) |
||||
K = minFactor; |
||||
|
||||
m_mean = K * value + ( 1.0f - K ) * m_mean; |
||||
m_P_mean = m_P_mean * m_R_mean / ( m_P_mean + m_R_mean ); |
||||
|
||||
K = m_P_sigma / ( m_P_sigma + m_R_sigma ); |
||||
if( K < minFactor ) |
||||
K = minFactor; |
||||
|
||||
float tmp_sigma = K * ( m_mean - value ) * ( m_mean - value ) + ( 1.0f - K ) * m_sigma * m_sigma; |
||||
m_P_sigma = m_P_sigma * m_R_mean / ( m_P_sigma + m_R_sigma ); |
||||
|
||||
m_sigma = static_cast<float>( sqrt( tmp_sigma ) ); |
||||
if( m_sigma <= 1.0f ) |
||||
m_sigma = 1.0f; |
||||
|
||||
} |
||||
|
||||
void EstimatedGaussDistribution::setValues( float mean, float sigma ) |
||||
{ |
||||
this->m_mean = mean; |
||||
this->m_sigma = sigma; |
||||
} |
||||
|
||||
float EstimatedGaussDistribution::getMean() |
||||
{ |
||||
return m_mean; |
||||
} |
||||
|
||||
float EstimatedGaussDistribution::getSigma() |
||||
{ |
||||
return m_sigma; |
||||
} |
||||
|
||||
WeakClassifierHaarFeature::WeakClassifierHaarFeature() |
||||
{ |
||||
sigma = 1; |
||||
mean = 0; |
||||
|
||||
EstimatedGaussDistribution* m_posSamples = new EstimatedGaussDistribution(); |
||||
EstimatedGaussDistribution* m_negSamples = new EstimatedGaussDistribution(); |
||||
generateRandomClassifier( m_posSamples, m_negSamples ); |
||||
|
||||
getInitialDistribution( (EstimatedGaussDistribution*) m_classifier->getDistribution( -1 ) ); |
||||
getInitialDistribution( (EstimatedGaussDistribution*) m_classifier->getDistribution( 1 ) ); |
||||
} |
||||
|
||||
WeakClassifierHaarFeature::~WeakClassifierHaarFeature() |
||||
{ |
||||
delete m_classifier; |
||||
} |
||||
|
||||
void WeakClassifierHaarFeature::getInitialDistribution( EstimatedGaussDistribution* distribution ) |
||||
{ |
||||
distribution->setValues( mean, sigma ); |
||||
} |
||||
|
||||
void WeakClassifierHaarFeature::generateRandomClassifier( EstimatedGaussDistribution* m_posSamples, EstimatedGaussDistribution* m_negSamples ) |
||||
{ |
||||
m_classifier = new ClassifierThreshold( m_posSamples, m_negSamples ); |
||||
} |
||||
|
||||
bool WeakClassifierHaarFeature::update( float value, int target ) |
||||
{ |
||||
m_classifier->update( value, target ); |
||||
return ( m_classifier->eval( value ) != target ); |
||||
} |
||||
|
||||
int WeakClassifierHaarFeature::eval( float value ) |
||||
{ |
||||
return m_classifier->eval( value ); |
||||
} |
||||
|
||||
Detector::Detector( StrongClassifierDirectSelection* classifier ) : |
||||
m_sizeDetections( 0 ) |
||||
{ |
||||
this->m_classifier = classifier; |
||||
|
||||
m_sizeConfidences = 0; |
||||
m_maxConfidence = -FLT_MAX; |
||||
m_numDetections = 0; |
||||
m_idxBestDetection = -1; |
||||
} |
||||
|
||||
Detector::~Detector() |
||||
{ |
||||
} |
||||
|
||||
void Detector::prepareConfidencesMemory( int numPatches ) |
||||
{ |
||||
if( numPatches <= m_sizeConfidences ) |
||||
return; |
||||
|
||||
m_sizeConfidences = numPatches; |
||||
m_confidences.resize( numPatches ); |
||||
} |
||||
|
||||
void Detector::prepareDetectionsMemory( int numDetections ) |
||||
{ |
||||
if( numDetections <= m_sizeDetections ) |
||||
return; |
||||
|
||||
m_sizeDetections = numDetections; |
||||
m_idxDetections.resize( numDetections ); |
||||
} |
||||
|
||||
void Detector::classifySmooth( const std::vector<Mat>& images, float minMargin ) |
||||
{ |
||||
int numPatches = images.size(); |
||||
|
||||
prepareConfidencesMemory( numPatches ); |
||||
|
||||
m_numDetections = 0; |
||||
m_idxBestDetection = -1; |
||||
m_maxConfidence = -FLT_MAX; |
||||
|
||||
//compute grid
|
||||
//TODO 0.99 overlap from params
|
||||
Size patchSz = m_classifier->getPatchSize(); |
||||
int stepCol = (int) floor( ( 1.0f - 0.99f ) * (float) patchSz.width + 0.5f ); |
||||
int stepRow = (int) floor( ( 1.0f - 0.99f ) * (float) patchSz.height + 0.5f ); |
||||
if( stepCol <= 0 ) |
||||
stepCol = 1; |
||||
if( stepRow <= 0 ) |
||||
stepRow = 1; |
||||
|
||||
Size patchGrid; |
||||
Rect ROI = m_classifier->getROI(); |
||||
patchGrid.height = ( (int) ( (float) ( ROI.height - patchSz.height ) / stepRow ) + 1 ); |
||||
patchGrid.width = ( (int) ( (float) ( ROI.width - patchSz.width ) / stepCol ) + 1 ); |
||||
|
||||
if( ( patchGrid.width != m_confMatrix.cols ) || ( patchGrid.height != m_confMatrix.rows ) ) |
||||
{ |
||||
m_confMatrix.create( patchGrid.height, patchGrid.width ); |
||||
m_confMatrixSmooth.create( patchGrid.height, patchGrid.width ); |
||||
m_confImageDisplay.create( patchGrid.height, patchGrid.width ); |
||||
} |
||||
|
||||
int curPatch = 0; |
||||
// Eval and filter
|
||||
for ( int row = 0; row < patchGrid.height; row++ ) |
||||
{ |
||||
for ( int col = 0; col < patchGrid.width; col++ ) |
||||
{ |
||||
m_confidences[curPatch] = m_classifier->eval( images[curPatch] ); |
||||
|
||||
// fill matrix
|
||||
m_confMatrix( row, col ) = m_confidences[curPatch]; |
||||
curPatch++; |
||||
} |
||||
} |
||||
|
||||
// Filter
|
||||
//cv::GaussianBlur(m_confMatrix,m_confMatrixSmooth,cv::Size(3,3),0.8);
|
||||
cv::GaussianBlur( m_confMatrix, m_confMatrixSmooth, cv::Size( 3, 3 ), 0 ); |
||||
|
||||
// Make display friendly
|
||||
double min_val, max_val; |
||||
cv::minMaxLoc( m_confMatrixSmooth, &min_val, &max_val ); |
||||
for ( int y = 0; y < m_confImageDisplay.rows; y++ ) |
||||
{ |
||||
unsigned char* pConfImg = m_confImageDisplay[y]; |
||||
const float* pConfData = m_confMatrixSmooth[y]; |
||||
for ( int x = 0; x < m_confImageDisplay.cols; x++, pConfImg++, pConfData++ ) |
||||
{ |
||||
*pConfImg = static_cast<unsigned char>( 255.0 * ( *pConfData - min_val ) / ( max_val - min_val ) ); |
||||
} |
||||
} |
||||
|
||||
// Get best detection
|
||||
curPatch = 0; |
||||
for ( int row = 0; row < patchGrid.height; row++ ) |
||||
{ |
||||
for ( int col = 0; col < patchGrid.width; col++ ) |
||||
{ |
||||
// fill matrix
|
||||
m_confidences[curPatch] = m_confMatrixSmooth( row, col ); |
||||
|
||||
if( m_confidences[curPatch] > m_maxConfidence ) |
||||
{ |
||||
m_maxConfidence = m_confidences[curPatch]; |
||||
m_idxBestDetection = curPatch; |
||||
} |
||||
if( m_confidences[curPatch] > minMargin ) |
||||
{ |
||||
m_numDetections++; |
||||
} |
||||
curPatch++; |
||||
} |
||||
} |
||||
|
||||
prepareDetectionsMemory( m_numDetections ); |
||||
int curDetection = -1; |
||||
for ( int currentPatch = 0; currentPatch < numPatches; currentPatch++ ) |
||||
{ |
||||
if( m_confidences[currentPatch] > minMargin ) |
||||
m_idxDetections[++curDetection] = currentPatch; |
||||
} |
||||
} |
||||
|
||||
int Detector::getNumDetections() |
||||
{ |
||||
return m_numDetections; |
||||
} |
||||
|
||||
float Detector::getConfidence( int patchIdx ) |
||||
{ |
||||
return m_confidences[patchIdx]; |
||||
} |
||||
|
||||
float Detector::getConfidenceOfDetection( int detectionIdx ) |
||||
{ |
||||
return m_confidences[getPatchIdxOfDetection( detectionIdx )]; |
||||
} |
||||
|
||||
int Detector::getPatchIdxOfBestDetection() |
||||
{ |
||||
return m_idxBestDetection; |
||||
} |
||||
|
||||
int Detector::getPatchIdxOfDetection( int detectionIdx ) |
||||
{ |
||||
return m_idxDetections[detectionIdx]; |
||||
} |
||||
|
||||
ClassifierThreshold::ClassifierThreshold( EstimatedGaussDistribution* posSamples, EstimatedGaussDistribution* negSamples ) |
||||
{ |
||||
m_posSamples = posSamples; |
||||
m_negSamples = negSamples; |
||||
m_threshold = 0.0f; |
||||
m_parity = 0; |
||||
} |
||||
|
||||
ClassifierThreshold::~ClassifierThreshold() |
||||
{ |
||||
if( m_posSamples != NULL ) |
||||
delete m_posSamples; |
||||
if( m_negSamples != NULL ) |
||||
delete m_negSamples; |
||||
} |
||||
|
||||
void* |
||||
ClassifierThreshold::getDistribution( int target ) |
||||
{ |
||||
if( target == 1 ) |
||||
return m_posSamples; |
||||
else |
||||
return m_negSamples; |
||||
} |
||||
|
||||
void ClassifierThreshold::update( float value, int target ) |
||||
{ |
||||
//update distribution
|
||||
if( target == 1 ) |
||||
m_posSamples->update( value ); |
||||
else |
||||
m_negSamples->update( value ); |
||||
|
||||
//adapt threshold and parity
|
||||
m_threshold = ( m_posSamples->getMean() + m_negSamples->getMean() ) / 2.0f; |
||||
m_parity = ( m_posSamples->getMean() > m_negSamples->getMean() ) ? 1 : -1; |
||||
} |
||||
|
||||
int ClassifierThreshold::eval( float value ) |
||||
{ |
||||
return ( ( ( m_parity * ( value - m_threshold ) ) > 0 ) ? 1 : -1 ); |
||||
} |
||||
|
||||
} /* namespace cv */ |
@ -0,0 +1,379 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
#include "opencv2/tracking/onlineMIL.hpp" |
||||
|
||||
template<class T> class SortableElementRev |
||||
{ |
||||
public: |
||||
T _val; |
||||
int _ind; |
||||
SortableElementRev() : |
||||
_ind( 0 ) |
||||
{ |
||||
} |
||||
SortableElementRev( T val, int ind ) |
||||
{ |
||||
_val = val; |
||||
_ind = ind; |
||||
} |
||||
bool operator<( SortableElementRev<T> &b ) |
||||
{ |
||||
return ( _val < b._val ); |
||||
} |
||||
; |
||||
}; |
||||
|
||||
static bool CompareSortableElementRev( const SortableElementRev<float>& i, const SortableElementRev<float>& j ) |
||||
{ |
||||
return i._val < j._val; |
||||
} |
||||
|
||||
template<class T> void sort_order_des( std::vector<T> &v, std::vector<int> &order ) |
||||
{ |
||||
uint n = (uint) v.size(); |
||||
std::vector<SortableElementRev<T> > v2; |
||||
v2.resize( n ); |
||||
order.clear(); |
||||
order.resize( n ); |
||||
for ( uint i = 0; i < n; i++ ) |
||||
{ |
||||
v2[i]._ind = i; |
||||
v2[i]._val = v[i]; |
||||
} |
||||
//std::sort( v2.begin(), v2.end() );
|
||||
std::sort( v2.begin(), v2.end(), CompareSortableElementRev ); |
||||
for ( uint i = 0; i < n; i++ ) |
||||
{ |
||||
order[i] = v2[i]._ind; |
||||
v[i] = v2[i]._val; |
||||
} |
||||
} |
||||
; |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
//implementations for strong classifier
|
||||
|
||||
ClfMilBoost::Params::Params() |
||||
{ |
||||
_numSel = 50; |
||||
_numFeat = 250; |
||||
_lRate = 0.85; |
||||
} |
||||
|
||||
ClfMilBoost::ClfMilBoost() |
||||
{ |
||||
_myParams = ClfMilBoost::Params(); |
||||
_numsamples = 0; |
||||
} |
||||
|
||||
ClfMilBoost::~ClfMilBoost() |
||||
{ |
||||
_selectors.clear(); |
||||
for ( size_t i = 0; i < _weakclf.size(); i++ ) |
||||
delete _weakclf.at( i ); |
||||
} |
||||
|
||||
void ClfMilBoost::init( const ClfMilBoost::Params ¶meters ) |
||||
{ |
||||
_myParams = parameters; |
||||
_numsamples = 0; |
||||
|
||||
//_ftrs = Ftr::generate( _myParams->_ftrParams, _myParams->_numFeat );
|
||||
// if( params->_storeFtrHistory )
|
||||
// Ftr::toViz( _ftrs, "haarftrs" );
|
||||
_weakclf.resize( _myParams._numFeat ); |
||||
for ( int k = 0; k < _myParams._numFeat; k++ ) |
||||
{ |
||||
_weakclf[k] = new ClfOnlineStump( k ); |
||||
_weakclf[k]->_lRate = _myParams._lRate; |
||||
|
||||
} |
||||
_counter = 0; |
||||
} |
||||
|
||||
void ClfMilBoost::update( const Mat& posx, const Mat& negx ) |
||||
{ |
||||
int numneg = negx.rows; |
||||
int numpos = posx.rows; |
||||
|
||||
// compute ftrs
|
||||
//if( !posx.ftrsComputed() )
|
||||
// Ftr::compute( posx, _ftrs );
|
||||
//if( !negx.ftrsComputed() )
|
||||
// Ftr::compute( negx, _ftrs );
|
||||
|
||||
// initialize H
|
||||
static std::vector<float> Hpos, Hneg; |
||||
Hpos.clear(); |
||||
Hneg.clear(); |
||||
Hpos.resize( posx.rows, 0.0f ), Hneg.resize( negx.rows, 0.0f ); |
||||
|
||||
_selectors.clear(); |
||||
std::vector<float> posw( posx.rows ), negw( negx.rows ); |
||||
std::vector<std::vector<float> > pospred( _weakclf.size() ), negpred( _weakclf.size() ); |
||||
|
||||
// train all weak classifiers without weights
|
||||
#ifdef _OPENMP |
||||
#pragma omp parallel for |
||||
#endif |
||||
for ( int m = 0; m < _myParams._numFeat; m++ ) |
||||
{ |
||||
_weakclf[m]->update( posx, negx ); |
||||
pospred[m] = _weakclf[m]->classifySetF( posx ); |
||||
negpred[m] = _weakclf[m]->classifySetF( negx ); |
||||
} |
||||
|
||||
// pick the best features
|
||||
for ( int s = 0; s < _myParams._numSel; s++ ) |
||||
{ |
||||
|
||||
// compute errors/likl for all weak clfs
|
||||
std::vector<float> poslikl( _weakclf.size(), 1.0f ), neglikl( _weakclf.size() ), likl( _weakclf.size() ); |
||||
#ifdef _OPENMP |
||||
#pragma omp parallel for |
||||
#endif |
||||
for ( int w = 0; w < (int) _weakclf.size(); w++ ) |
||||
{ |
||||
float lll = 1.0f; |
||||
for ( int j = 0; j < numpos; j++ ) |
||||
lll *= ( 1 - sigmoid( Hpos[j] + pospred[w][j] ) ); |
||||
poslikl[w] = (float) -log( 1 - lll + 1e-5 ); |
||||
|
||||
lll = 0.0f; |
||||
for ( int j = 0; j < numneg; j++ ) |
||||
lll += (float) -log( 1e-5f + 1 - sigmoid( Hneg[j] + negpred[w][j] ) ); |
||||
neglikl[w] = lll; |
||||
|
||||
likl[w] = poslikl[w] / numpos + neglikl[w] / numneg; |
||||
} |
||||
|
||||
// pick best weak clf
|
||||
std::vector<int> order; |
||||
sort_order_des( likl, order ); |
||||
|
||||
// find best weakclf that isn't already included
|
||||
for ( uint k = 0; k < order.size(); k++ ) |
||||
if( std::count( _selectors.begin(), _selectors.end(), order[k] ) == 0 ) |
||||
{ |
||||
_selectors.push_back( order[k] ); |
||||
break; |
||||
} |
||||
|
||||
// update H = H + h_m
|
||||
#ifdef _OPENMP |
||||
#pragma omp parallel for |
||||
#endif |
||||
for ( int k = 0; k < posx.rows; k++ ) |
||||
Hpos[k] += pospred[_selectors[s]][k]; |
||||
#ifdef _OPENMP |
||||
#pragma omp parallel for |
||||
#endif |
||||
for ( int k = 0; k < negx.rows; k++ ) |
||||
Hneg[k] += negpred[_selectors[s]][k]; |
||||
|
||||
} |
||||
|
||||
//if( _myParams->_storeFtrHistory )
|
||||
//for ( uint j = 0; j < _selectors.size(); j++ )
|
||||
// _ftrHist( _selectors[j], _counter ) = 1.0f / ( j + 1 );
|
||||
|
||||
_counter++; |
||||
/* */ |
||||
return; |
||||
} |
||||
|
||||
std::vector<float> ClfMilBoost::classify( const Mat& x, bool logR ) |
||||
{ |
||||
int numsamples = x.rows; |
||||
std::vector<float> res( numsamples ); |
||||
std::vector<float> tr; |
||||
|
||||
for ( uint w = 0; w < _selectors.size(); w++ ) |
||||
{ |
||||
tr = _weakclf[_selectors[w]]->classifySetF( x ); |
||||
#ifdef _OPENMP |
||||
#pragma omp parallel for |
||||
#endif |
||||
for ( int j = 0; j < numsamples; j++ ) |
||||
{ |
||||
res[j] += tr[j]; |
||||
} |
||||
} |
||||
|
||||
// return probabilities or log odds ratio
|
||||
if( !logR ) |
||||
{ |
||||
#ifdef _OPENMP |
||||
#pragma omp parallel for |
||||
#endif |
||||
for ( int j = 0; j < (int) res.size(); j++ ) |
||||
{ |
||||
res[j] = sigmoid( res[j] ); |
||||
} |
||||
} |
||||
|
||||
return res; |
||||
} |
||||
|
||||
//implementations for weak classifier
|
||||
|
||||
ClfOnlineStump::ClfOnlineStump() |
||||
{ |
||||
_trained = false; |
||||
_ind = -1; |
||||
init(); |
||||
} |
||||
|
||||
ClfOnlineStump::ClfOnlineStump( int ind ) |
||||
{ |
||||
_trained = false; |
||||
_ind = ind; |
||||
init(); |
||||
} |
||||
void ClfOnlineStump::init() |
||||
{ |
||||
_mu0 = 0; |
||||
_mu1 = 0; |
||||
_sig0 = 1; |
||||
_sig1 = 1; |
||||
_lRate = 0.85f; |
||||
_trained = false; |
||||
} |
||||
|
||||
void ClfOnlineStump::update( const Mat& posx, const Mat& negx, const Mat_<float>& /*posw*/, const Mat_<float>& /*negw*/) |
||||
{ |
||||
//std::cout << " ClfOnlineStump::update" << _ind << std::endl;
|
||||
float posmu = 0.0, negmu = 0.0; |
||||
if( posx.cols > 0 ) |
||||
posmu = float( mean( posx.col( _ind ) )[0] ); |
||||
if( negx.cols > 0 ) |
||||
negmu = float( mean( negx.col( _ind ) )[0] ); |
||||
|
||||
if( _trained ) |
||||
{ |
||||
if( posx.cols > 0 ) |
||||
{ |
||||
_mu1 = ( _lRate * _mu1 + ( 1 - _lRate ) * posmu ); |
||||
cv::Mat diff = posx.col( _ind ) - _mu1; |
||||
_sig1 = _lRate * _sig1 + ( 1 - _lRate ) * float( mean( diff.mul( diff ) )[0] ); |
||||
} |
||||
if( negx.cols > 0 ) |
||||
{ |
||||
_mu0 = ( _lRate * _mu0 + ( 1 - _lRate ) * negmu ); |
||||
cv::Mat diff = negx.col( _ind ) - _mu0; |
||||
_sig0 = _lRate * _sig0 + ( 1 - _lRate ) * float( mean( diff.mul( diff ) )[0] ); |
||||
} |
||||
|
||||
_q = ( _mu1 - _mu0 ) / 2; |
||||
_s = sign( _mu1 - _mu0 ); |
||||
_log_n0 = std::log( float( 1.0f / pow( _sig0, 0.5f ) ) ); |
||||
_log_n1 = std::log( float( 1.0f / pow( _sig1, 0.5f ) ) ); |
||||
//_e1 = -1.0f/(2.0f*_sig1+1e-99f);
|
||||
//_e0 = -1.0f/(2.0f*_sig0+1e-99f);
|
||||
_e1 = -1.0f / ( 2.0f * _sig1 + std::numeric_limits<float>::min() ); |
||||
_e0 = -1.0f / ( 2.0f * _sig0 + std::numeric_limits<float>::min() ); |
||||
|
||||
} |
||||
else |
||||
{ |
||||
_trained = true; |
||||
if( posx.cols > 0 ) |
||||
{ |
||||
_mu1 = posmu; |
||||
cv::Scalar scal_mean, scal_std_dev; |
||||
cv::meanStdDev( posx.col( _ind ), scal_mean, scal_std_dev ); |
||||
_sig1 = float( scal_std_dev[0] ) * float( scal_std_dev[0] ) + 1e-9f; |
||||
} |
||||
|
||||
if( negx.cols > 0 ) |
||||
{ |
||||
_mu0 = negmu; |
||||
cv::Scalar scal_mean, scal_std_dev; |
||||
cv::meanStdDev( negx.col( _ind ), scal_mean, scal_std_dev ); |
||||
_sig0 = float( scal_std_dev[0] ) * float( scal_std_dev[0] ) + 1e-9f; |
||||
} |
||||
|
||||
_q = ( _mu1 - _mu0 ) / 2; |
||||
_s = sign( _mu1 - _mu0 ); |
||||
_log_n0 = std::log( float( 1.0f / pow( _sig0, 0.5f ) ) ); |
||||
_log_n1 = std::log( float( 1.0f / pow( _sig1, 0.5f ) ) ); |
||||
//_e1 = -1.0f/(2.0f*_sig1+1e-99f);
|
||||
//_e0 = -1.0f/(2.0f*_sig0+1e-99f);
|
||||
_e1 = -1.0f / ( 2.0f * _sig1 + std::numeric_limits<float>::min() ); |
||||
_e0 = -1.0f / ( 2.0f * _sig0 + std::numeric_limits<float>::min() ); |
||||
} |
||||
} |
||||
|
||||
bool ClfOnlineStump::classify( const Mat& x, int i ) |
||||
{ |
||||
float xx = x.at<float>( i, _ind ); |
||||
double log_p0 = ( xx - _mu0 ) * ( xx - _mu0 ) * _e0 + _log_n0; |
||||
double log_p1 = ( xx - _mu1 ) * ( xx - _mu1 ) * _e1 + _log_n1; |
||||
return log_p1 > log_p0; |
||||
} |
||||
|
||||
float ClfOnlineStump::classifyF( const Mat& x, int i ) |
||||
{ |
||||
float xx = x.at<float>( i, _ind ); |
||||
double log_p0 = ( xx - _mu0 ) * ( xx - _mu0 ) * _e0 + _log_n0; |
||||
double log_p1 = ( xx - _mu1 ) * ( xx - _mu1 ) * _e1 + _log_n1; |
||||
return float( log_p1 - log_p0 ); |
||||
} |
||||
|
||||
inline std::vector<float> ClfOnlineStump::classifySetF( const Mat& x ) |
||||
{ |
||||
std::vector<float> res( x.rows ); |
||||
|
||||
#ifdef _OPENMP |
||||
#pragma omp parallel for |
||||
#endif |
||||
for ( int k = 0; k < (int) res.size(); k++ ) |
||||
{ |
||||
res[k] = classifyF( x, k ); |
||||
} |
||||
return res; |
||||
} |
||||
|
||||
} /* namespace cv */ |
@ -0,0 +1,49 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_PRECOMP_H__ |
||||
#define __OPENCV_PRECOMP_H__ |
||||
|
||||
#include "opencv2/tracking.hpp" |
||||
#include "opencv2/core/utility.hpp" |
||||
#include "opencv2/core/private.hpp" |
||||
|
||||
#endif |
@ -0,0 +1,107 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
/*
|
||||
* Tracker |
||||
*/ |
||||
|
||||
Tracker::~Tracker() |
||||
{ |
||||
} |
||||
|
||||
bool Tracker::init( const Mat& image, const Rect& boundingBox ) |
||||
{ |
||||
|
||||
if( isInit ) |
||||
{ |
||||
return false; |
||||
} |
||||
|
||||
if( image.empty() ) |
||||
return false; |
||||
|
||||
sampler = Ptr<TrackerSampler>( new TrackerSampler() ); |
||||
featureSet = Ptr<TrackerFeatureSet>( new TrackerFeatureSet() ); |
||||
model = Ptr<TrackerModel>(); |
||||
|
||||
bool initTracker = initImpl( image, boundingBox ); |
||||
|
||||
//check if the model component is initialized
|
||||
if( model == 0 ) |
||||
{ |
||||
CV_Error( -1, "The model are not initialized" ); |
||||
return false; |
||||
} |
||||
|
||||
if( initTracker ) |
||||
{ |
||||
isInit = true; |
||||
} |
||||
|
||||
return initTracker; |
||||
} |
||||
|
||||
bool Tracker::update( const Mat& image, Rect& boundingBox ) |
||||
{ |
||||
|
||||
if( !isInit ) |
||||
{ |
||||
return false; |
||||
} |
||||
|
||||
if( image.empty() ) |
||||
return false; |
||||
|
||||
return updateImpl( image, boundingBox ); |
||||
} |
||||
|
||||
Ptr<Tracker> Tracker::create( const String& trackerType ) |
||||
{ |
||||
|
||||
return Algorithm::create<Tracker>( "TRACKER." + trackerType ); |
||||
} |
||||
|
||||
} /* namespace cv */ |
@ -0,0 +1,308 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
#include "trackerBoostingModel.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
/*
|
||||
* TrackerBoosting |
||||
*/ |
||||
|
||||
/*
|
||||
* Parameters |
||||
*/ |
||||
TrackerBoosting::Params::Params() |
||||
{ |
||||
numClassifiers = 100; |
||||
samplerOverlap = 0.99f; |
||||
samplerSearchFactor = 2; |
||||
iterationInit = 50; |
||||
featureSetNumFeatures = ( numClassifiers * 10 ) + iterationInit; |
||||
} |
||||
|
||||
void TrackerBoosting::Params::read( const cv::FileNode& fn ) |
||||
{ |
||||
numClassifiers = fn["numClassifiers"]; |
||||
samplerOverlap = fn["overlap"]; |
||||
samplerSearchFactor = fn["samplerSearchFactor"]; |
||||
iterationInit = fn["iterationInit"]; |
||||
samplerSearchFactor = fn["searchFactor"]; |
||||
} |
||||
|
||||
void TrackerBoosting::Params::write( cv::FileStorage& fs ) const |
||||
{ |
||||
fs << "numClassifiers" << numClassifiers; |
||||
fs << "overlap" << samplerOverlap; |
||||
fs << "searchFactor" << samplerSearchFactor; |
||||
fs << "iterationInit" << iterationInit; |
||||
fs << "samplerSearchFactor" << samplerSearchFactor; |
||||
} |
||||
|
||||
/*
|
||||
* Constructor |
||||
*/ |
||||
TrackerBoosting::TrackerBoosting( const TrackerBoosting::Params ¶meters ) : |
||||
params( parameters ) |
||||
{ |
||||
isInit = false; |
||||
} |
||||
|
||||
/*
|
||||
* Destructor |
||||
*/ |
||||
TrackerBoosting::~TrackerBoosting() |
||||
{ |
||||
|
||||
} |
||||
|
||||
void TrackerBoosting::read( const cv::FileNode& fn ) |
||||
{ |
||||
params.read( fn ); |
||||
} |
||||
|
||||
void TrackerBoosting::write( cv::FileStorage& fs ) const |
||||
{ |
||||
params.write( fs ); |
||||
} |
||||
|
||||
bool TrackerBoosting::initImpl( const Mat& image, const Rect& boundingBox ) |
||||
{ |
||||
//sampling
|
||||
Mat_<int> intImage; |
||||
Mat_<double> intSqImage; |
||||
Mat image_; |
||||
cvtColor( image, image_, CV_RGB2GRAY ); |
||||
integral( image_, intImage, intSqImage, CV_32S ); |
||||
TrackerSamplerCS::Params CSparameters; |
||||
CSparameters.overlap = params.samplerOverlap; |
||||
CSparameters.searchFactor = params.samplerSearchFactor; |
||||
|
||||
Ptr<TrackerSamplerAlgorithm> CSSampler = Ptr<TrackerSamplerCS>( new TrackerSamplerCS( CSparameters ) ); |
||||
|
||||
if( !sampler->addTrackerSamplerAlgorithm( CSSampler ) ) |
||||
return false; |
||||
|
||||
CSSampler.staticCast<TrackerSamplerCS>()->setMode( TrackerSamplerCS::MODE_POSITIVE ); |
||||
sampler->sampling( intImage, boundingBox ); |
||||
const std::vector<Mat> posSamples = sampler->getSamples(); |
||||
|
||||
CSSampler.staticCast<TrackerSamplerCS>()->setMode( TrackerSamplerCS::MODE_NEGATIVE ); |
||||
sampler->sampling( intImage, boundingBox ); |
||||
const std::vector<Mat> negSamples = sampler->getSamples(); |
||||
|
||||
if( posSamples.empty() || negSamples.empty() ) |
||||
return false; |
||||
|
||||
Rect ROI = CSSampler.staticCast<TrackerSamplerCS>()->getROI(); |
||||
|
||||
//compute HAAR features
|
||||
TrackerFeatureHAAR::Params HAARparameters; |
||||
HAARparameters.numFeatures = params.featureSetNumFeatures; |
||||
HAARparameters.isIntegral = true; |
||||
HAARparameters.rectSize = Size( boundingBox.width, boundingBox.height ); |
||||
Ptr<TrackerFeature> trackerFeature = Ptr<TrackerFeatureHAAR>( new TrackerFeatureHAAR( HAARparameters ) ); |
||||
if( !featureSet->addTrackerFeature( trackerFeature ) ) |
||||
return false; |
||||
|
||||
featureSet->extraction( posSamples ); |
||||
const std::vector<Mat> posResponse = featureSet->getResponses(); |
||||
featureSet->extraction( negSamples ); |
||||
const std::vector<Mat> negResponse = featureSet->getResponses(); |
||||
|
||||
//Model
|
||||
model = Ptr<TrackerBoostingModel>( new TrackerBoostingModel( boundingBox ) ); |
||||
Ptr<TrackerStateEstimatorAdaBoosting> stateEstimator = Ptr<TrackerStateEstimatorAdaBoosting>( |
||||
new TrackerStateEstimatorAdaBoosting( params.numClassifiers, params.iterationInit, params.featureSetNumFeatures, |
||||
Size( boundingBox.width, boundingBox.height ), ROI ) ); |
||||
model->setTrackerStateEstimator( stateEstimator ); |
||||
|
||||
//Run model estimation and update for iterationInit iterations
|
||||
for ( int i = 0; i < params.iterationInit; i++ ) |
||||
{ |
||||
//compute temp features
|
||||
TrackerFeatureHAAR::Params HAARparameters2; |
||||
HAARparameters2.numFeatures = ( posSamples.size() + negSamples.size() ); |
||||
HAARparameters2.isIntegral = true; |
||||
HAARparameters2.rectSize = Size( boundingBox.width, boundingBox.height ); |
||||
Ptr<TrackerFeatureHAAR> trackerFeature2 = Ptr<TrackerFeatureHAAR>( new TrackerFeatureHAAR( HAARparameters2 ) ); |
||||
|
||||
model.staticCast<TrackerBoostingModel>()->setMode( TrackerBoostingModel::MODE_NEGATIVE, negSamples ); |
||||
model->modelEstimation( negResponse ); |
||||
model.staticCast<TrackerBoostingModel>()->setMode( TrackerBoostingModel::MODE_POSITIVE, posSamples ); |
||||
model->modelEstimation( posResponse ); |
||||
model->modelUpdate(); |
||||
|
||||
//get replaced classifier and change the features
|
||||
std::vector<int> replacedClassifier = stateEstimator->computeReplacedClassifier(); |
||||
std::vector<int> swappedClassified = stateEstimator->computeSwappedClassifier(); |
||||
for ( size_t j = 0; j < replacedClassifier.size(); j++ ) |
||||
{ |
||||
if( replacedClassifier[j] != -1 && swappedClassified[j] != -1 ) |
||||
{ |
||||
trackerFeature.staticCast<TrackerFeatureHAAR>()->swapFeature( replacedClassifier[j], swappedClassified[j] ); |
||||
trackerFeature.staticCast<TrackerFeatureHAAR>()->swapFeature( swappedClassified[j], trackerFeature2->getFeatureAt( j ) ); |
||||
} |
||||
} |
||||
} |
||||
|
||||
return true; |
||||
} |
||||
|
||||
bool TrackerBoosting::updateImpl( const Mat& image, Rect& boundingBox ) |
||||
{ |
||||
Mat_<int> intImage; |
||||
Mat_<double> intSqImage; |
||||
Mat image_; |
||||
cvtColor( image, image_, CV_RGB2GRAY ); |
||||
integral( image_, intImage, intSqImage, CV_32S ); |
||||
//get the last location [AAM] X(k-1)
|
||||
Ptr<TrackerTargetState> lastLocation = model->getLastTargetState(); |
||||
Rect lastBoundingBox( lastLocation->getTargetPosition().x, lastLocation->getTargetPosition().y, lastLocation->getTargetWidth(), |
||||
lastLocation->getTargetHeight() ); |
||||
|
||||
//sampling new frame based on last location
|
||||
( sampler->getSamplers().at( 0 ).second ).staticCast<TrackerSamplerCS>()->setMode( TrackerSamplerCS::MODE_CLASSIFY ); |
||||
sampler->sampling( intImage, lastBoundingBox ); |
||||
const std::vector<Mat> detectSamples = sampler->getSamples(); |
||||
Rect ROI = ( sampler->getSamplers().at( 0 ).second ).staticCast<TrackerSamplerCS>()->getROI(); |
||||
|
||||
if( detectSamples.empty() ) |
||||
return false; |
||||
|
||||
/*//TODO debug samples
|
||||
Mat f; |
||||
image.copyTo( f ); |
||||
|
||||
for ( size_t i = 0; i < detectSamples.size(); i = i + 10 ) |
||||
{ |
||||
Size sz; |
||||
Point off; |
||||
detectSamples.at( i ).locateROI( sz, off ); |
||||
rectangle( f, Rect( off.x, off.y, detectSamples.at( i ).cols, detectSamples.at( i ).rows ), Scalar( 255, 0, 0 ), 1 ); |
||||
}*/ |
||||
|
||||
std::vector<Mat> responses; |
||||
Mat response; |
||||
|
||||
std::vector<int> classifiers = model->getTrackerStateEstimator().staticCast<TrackerStateEstimatorAdaBoosting>()->computeSelectedWeakClassifier(); |
||||
Ptr<TrackerFeatureHAAR> extractor = featureSet->getTrackerFeature()[0].second.staticCast<TrackerFeatureHAAR>(); |
||||
extractor->extractSelected( classifiers, detectSamples, response ); |
||||
responses.push_back( response ); |
||||
|
||||
//predict new location
|
||||
ConfidenceMap cmap; |
||||
model.staticCast<TrackerBoostingModel>()->setMode( TrackerBoostingModel::MODE_CLASSIFY, detectSamples ); |
||||
model.staticCast<TrackerBoostingModel>()->responseToConfidenceMap( responses, cmap ); |
||||
model->getTrackerStateEstimator().staticCast<TrackerStateEstimatorAdaBoosting>()->setCurrentConfidenceMap( cmap ); |
||||
model->getTrackerStateEstimator().staticCast<TrackerStateEstimatorAdaBoosting>()->setSampleROI( ROI ); |
||||
|
||||
if( !model->runStateEstimator() ) |
||||
{ |
||||
return false; |
||||
} |
||||
|
||||
Ptr<TrackerTargetState> currentState = model->getLastTargetState(); |
||||
boundingBox = Rect( currentState->getTargetPosition().x, currentState->getTargetPosition().y, currentState->getTargetWidth(), |
||||
currentState->getTargetHeight() ); |
||||
|
||||
/*//TODO debug
|
||||
rectangle( f, lastBoundingBox, Scalar( 0, 255, 0 ), 1 ); |
||||
rectangle( f, boundingBox, Scalar( 0, 0, 255 ), 1 ); |
||||
imshow( "f", f ); |
||||
//waitKey( 0 );*/
|
||||
|
||||
//sampling new frame based on new location
|
||||
//Positive sampling
|
||||
( sampler->getSamplers().at( 0 ).second ).staticCast<TrackerSamplerCS>()->setMode( TrackerSamplerCS::MODE_POSITIVE ); |
||||
sampler->sampling( intImage, boundingBox ); |
||||
const std::vector<Mat> posSamples = sampler->getSamples(); |
||||
|
||||
//Negative sampling
|
||||
( sampler->getSamplers().at( 0 ).second ).staticCast<TrackerSamplerCS>()->setMode( TrackerSamplerCS::MODE_NEGATIVE ); |
||||
sampler->sampling( intImage, boundingBox ); |
||||
const std::vector<Mat> negSamples = sampler->getSamples(); |
||||
|
||||
if( posSamples.empty() || negSamples.empty() ) |
||||
return false; |
||||
|
||||
//extract features
|
||||
featureSet->extraction( posSamples ); |
||||
const std::vector<Mat> posResponse = featureSet->getResponses(); |
||||
|
||||
featureSet->extraction( negSamples ); |
||||
const std::vector<Mat> negResponse = featureSet->getResponses(); |
||||
|
||||
//compute temp features
|
||||
TrackerFeatureHAAR::Params HAARparameters2; |
||||
HAARparameters2.numFeatures = ( posSamples.size() + negSamples.size() ); |
||||
HAARparameters2.isIntegral = true; |
||||
HAARparameters2.rectSize = Size( boundingBox.width, boundingBox.height ); |
||||
Ptr<TrackerFeatureHAAR> trackerFeature2 = Ptr<TrackerFeatureHAAR>( new TrackerFeatureHAAR( HAARparameters2 ) ); |
||||
|
||||
//model estimate
|
||||
model.staticCast<TrackerBoostingModel>()->setMode( TrackerBoostingModel::MODE_NEGATIVE, negSamples ); |
||||
model->modelEstimation( negResponse ); |
||||
model.staticCast<TrackerBoostingModel>()->setMode( TrackerBoostingModel::MODE_POSITIVE, posSamples ); |
||||
model->modelEstimation( posResponse ); |
||||
|
||||
//model update
|
||||
model->modelUpdate(); |
||||
|
||||
//get replaced classifier and change the features
|
||||
std::vector<int> replacedClassifier = model->getTrackerStateEstimator().staticCast<TrackerStateEstimatorAdaBoosting>()->computeReplacedClassifier(); |
||||
std::vector<int> swappedClassified = model->getTrackerStateEstimator().staticCast<TrackerStateEstimatorAdaBoosting>()->computeSwappedClassifier(); |
||||
for ( size_t j = 0; j < replacedClassifier.size(); j++ ) |
||||
{ |
||||
if( replacedClassifier[j] != -1 && swappedClassified[j] != -1 ) |
||||
{ |
||||
featureSet->getTrackerFeature().at( 0 ).second.staticCast<TrackerFeatureHAAR>()->swapFeature( replacedClassifier[j], swappedClassified[j] ); |
||||
featureSet->getTrackerFeature().at( 0 ).second.staticCast<TrackerFeatureHAAR>()->swapFeature( swappedClassified[j], |
||||
trackerFeature2->getFeatureAt( j ) ); |
||||
} |
||||
} |
||||
|
||||
return true; |
||||
} |
||||
|
||||
} /* namespace cv */ |
@ -0,0 +1,123 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "trackerBoostingModel.hpp" |
||||
|
||||
/**
|
||||
* TrackerBoostingModel |
||||
*/ |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
TrackerBoostingModel::TrackerBoostingModel( const Rect& boundingBox ) |
||||
{ |
||||
|
||||
mode = MODE_POSITIVE; |
||||
|
||||
Ptr<TrackerStateEstimatorAdaBoosting::TrackerAdaBoostingTargetState> initState = |
||||
Ptr<TrackerStateEstimatorAdaBoosting::TrackerAdaBoostingTargetState>( |
||||
new TrackerStateEstimatorAdaBoosting::TrackerAdaBoostingTargetState( Point2f( boundingBox.x, boundingBox.y ), boundingBox.width, |
||||
boundingBox.height, true, Mat() ) ); |
||||
trajectory.push_back( initState ); |
||||
maxCMLength = 10; |
||||
} |
||||
|
||||
void TrackerBoostingModel::modelEstimationImpl( const std::vector<Mat>& responses ) |
||||
{ |
||||
responseToConfidenceMap( responses, currentConfidenceMap ); |
||||
} |
||||
|
||||
void TrackerBoostingModel::modelUpdateImpl() |
||||
{ |
||||
|
||||
} |
||||
|
||||
void TrackerBoostingModel::setMode( int trainingMode, const std::vector<Mat>& samples ) |
||||
{ |
||||
currentSample.clear(); |
||||
currentSample = samples; |
||||
|
||||
mode = trainingMode; |
||||
} |
||||
|
||||
std::vector<int> TrackerBoostingModel::getSelectedWeakClassifier() |
||||
{ |
||||
return stateEstimator.staticCast<TrackerStateEstimatorAdaBoosting>()->computeSelectedWeakClassifier(); |
||||
} |
||||
|
||||
void TrackerBoostingModel::responseToConfidenceMap( const std::vector<Mat>& responses, ConfidenceMap& confidenceMap ) |
||||
{ |
||||
if( currentSample.empty() ) |
||||
{ |
||||
CV_Error( -1, "The samples in Model estimation are empty" ); |
||||
return; |
||||
} |
||||
|
||||
for ( size_t i = 0; i < currentSample.size(); i++ ) |
||||
{ |
||||
|
||||
Size currentSize; |
||||
Point currentOfs; |
||||
currentSample.at( i ).locateROI( currentSize, currentOfs ); |
||||
bool foreground; |
||||
if( mode == MODE_POSITIVE || mode == MODE_CLASSIFY ) |
||||
{ |
||||
foreground = true; |
||||
} |
||||
else if( mode == MODE_NEGATIVE ) |
||||
{ |
||||
foreground = false; |
||||
} |
||||
const Mat resp = responses[0].col( i ); |
||||
|
||||
//create the state
|
||||
Ptr<TrackerStateEstimatorAdaBoosting::TrackerAdaBoostingTargetState> currentState = Ptr< |
||||
TrackerStateEstimatorAdaBoosting::TrackerAdaBoostingTargetState>( |
||||
new TrackerStateEstimatorAdaBoosting::TrackerAdaBoostingTargetState( currentOfs, currentSample.at( i ).cols, currentSample.at( i ).rows, |
||||
foreground, resp ) ); |
||||
|
||||
confidenceMap.push_back( std::make_pair( currentState, 0 ) ); |
||||
|
||||
} |
||||
} |
||||
|
||||
} |
@ -0,0 +1,109 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_TRACKER_BOOSTING_MODEL_HPP__ |
||||
#define __OPENCV_TRACKER_BOOSTING_MODEL_HPP__ |
||||
|
||||
#include "precomp.hpp" |
||||
#include "opencv2/core.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
/**
|
||||
* \brief Implementation of TrackerModel for BOOSTING algorithm |
||||
*/ |
||||
class TrackerBoostingModel : public TrackerModel |
||||
{ |
||||
public: |
||||
enum
|
||||
{ |
||||
MODE_POSITIVE = 1, // mode for positive features
|
||||
MODE_NEGATIVE = 2, // mode for negative features
|
||||
MODE_CLASSIFY = 3 // mode for classify step
|
||||
}; |
||||
/**
|
||||
* \brief Constructor |
||||
* \param boundingBox The first boundingBox |
||||
*/ |
||||
TrackerBoostingModel( const Rect& boundingBox ); |
||||
|
||||
/**
|
||||
* \brief Destructor |
||||
*/ |
||||
~TrackerBoostingModel() |
||||
{ |
||||
} |
||||
; |
||||
|
||||
/**
|
||||
* \brief Set the mode |
||||
*/ |
||||
void setMode( int trainingMode, const std::vector<Mat>& samples ); |
||||
|
||||
/**
|
||||
* \brief Create the ConfidenceMap from a list of responses |
||||
* \param responses The list of the responses |
||||
* \param confidenceMap The output |
||||
*/ |
||||
void responseToConfidenceMap( const std::vector<Mat>& responses, ConfidenceMap& confidenceMap ); |
||||
|
||||
/**
|
||||
* \brief return the selected weak classifiers for the detect |
||||
* @return the selected weak classifiers |
||||
*/ |
||||
std::vector<int> getSelectedWeakClassifier(); |
||||
|
||||
protected: |
||||
void modelEstimationImpl( const std::vector<Mat>& responses ); |
||||
void modelUpdateImpl(); |
||||
|
||||
private: |
||||
|
||||
std::vector<Mat> currentSample; |
||||
std::vector<std::pair<float, float> > meanSigmaPair; |
||||
|
||||
int mode; |
||||
}; |
||||
|
||||
} /* namespace cv */ |
||||
|
||||
#endif |
@ -0,0 +1,325 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
/*
|
||||
* TrackerFeature |
||||
*/ |
||||
|
||||
TrackerFeature::~TrackerFeature() |
||||
{ |
||||
|
||||
} |
||||
|
||||
void TrackerFeature::compute( const std::vector<Mat>& images, Mat& response ) |
||||
{ |
||||
if( images.empty() ) |
||||
return; |
||||
|
||||
computeImpl( images, response ); |
||||
} |
||||
|
||||
Ptr<TrackerFeature> TrackerFeature::create( const String& trackerFeatureType ) |
||||
{ |
||||
if( trackerFeatureType.find( "FEATURE2D" ) == 0 ) |
||||
{ |
||||
size_t firstSep = trackerFeatureType.find_first_of( "." ); |
||||
size_t secondSep = trackerFeatureType.find_last_of( "." ); |
||||
|
||||
String detector = trackerFeatureType.substr( firstSep, secondSep - firstSep ); |
||||
String descriptor = trackerFeatureType.substr( secondSep, trackerFeatureType.length() - secondSep ); |
||||
|
||||
return Ptr<TrackerFeatureFeature2d>( new TrackerFeatureFeature2d( detector, descriptor ) ); |
||||
} |
||||
|
||||
if( trackerFeatureType.find( "HOG" ) == 0 ) |
||||
{ |
||||
return Ptr<TrackerFeatureHOG>( new TrackerFeatureHOG() ); |
||||
} |
||||
|
||||
if( trackerFeatureType.find( "HAAR" ) == 0 ) |
||||
{ |
||||
return Ptr<TrackerFeatureHAAR>( new TrackerFeatureHAAR() ); |
||||
} |
||||
|
||||
if( trackerFeatureType.find( "LBP" ) == 0 ) |
||||
{ |
||||
return Ptr<TrackerFeatureLBP>( new TrackerFeatureLBP() ); |
||||
} |
||||
|
||||
CV_Error( -1, "Tracker feature type not supported" ); |
||||
return Ptr<TrackerFeature>(); |
||||
} |
||||
|
||||
String TrackerFeature::getClassName() const |
||||
{ |
||||
return className; |
||||
} |
||||
|
||||
/**
|
||||
* TrackerFeatureFeature2d |
||||
*/ |
||||
TrackerFeatureFeature2d::TrackerFeatureFeature2d( String /*detectorType*/, String /*descriptorType*/) |
||||
{ |
||||
className = "FEATURE2D"; |
||||
} |
||||
|
||||
TrackerFeatureFeature2d::~TrackerFeatureFeature2d() |
||||
{ |
||||
|
||||
} |
||||
|
||||
bool TrackerFeatureFeature2d::computeImpl( const std::vector<Mat>& /*images*/, Mat& /*response*/) |
||||
{ |
||||
return false; |
||||
} |
||||
|
||||
void TrackerFeatureFeature2d::selection( Mat& /*response*/, int /*npoints*/) |
||||
{ |
||||
|
||||
} |
||||
|
||||
/**
|
||||
* TrackerFeatureHOG |
||||
*/ |
||||
TrackerFeatureHOG::TrackerFeatureHOG() |
||||
{ |
||||
className = "HOG"; |
||||
} |
||||
|
||||
TrackerFeatureHOG::~TrackerFeatureHOG() |
||||
{ |
||||
|
||||
} |
||||
|
||||
bool TrackerFeatureHOG::computeImpl( const std::vector<Mat>& /*images*/, Mat& /*response*/) |
||||
{ |
||||
return false; |
||||
} |
||||
|
||||
void TrackerFeatureHOG::selection( Mat& /*response*/, int /*npoints*/) |
||||
{ |
||||
|
||||
} |
||||
|
||||
/**
|
||||
* TrackerFeatureHAAR |
||||
*/ |
||||
|
||||
/**
|
||||
* Parameters |
||||
*/ |
||||
|
||||
TrackerFeatureHAAR::Params::Params() |
||||
{ |
||||
numFeatures = 250; |
||||
rectSize = Size( 100, 100 ); |
||||
isIntegral = false; |
||||
} |
||||
|
||||
TrackerFeatureHAAR::TrackerFeatureHAAR( const TrackerFeatureHAAR::Params ¶meters ) : |
||||
params( parameters ) |
||||
{ |
||||
className = "HAAR"; |
||||
|
||||
CvHaarFeatureParams haarParams; |
||||
haarParams.numFeatures = params.numFeatures; |
||||
haarParams.isIntegral = params.isIntegral; |
||||
featureEvaluator = CvFeatureEvaluator::create( CvFeatureParams::HAAR ).staticCast<CvHaarEvaluator>(); |
||||
featureEvaluator->init( &haarParams, 1, params.rectSize ); |
||||
} |
||||
|
||||
TrackerFeatureHAAR::~TrackerFeatureHAAR() |
||||
{ |
||||
|
||||
} |
||||
|
||||
CvHaarEvaluator::FeatureHaar& TrackerFeatureHAAR::getFeatureAt( int id ) |
||||
{ |
||||
return featureEvaluator->getFeatures( id ); |
||||
} |
||||
|
||||
bool TrackerFeatureHAAR::swapFeature( int id, CvHaarEvaluator::FeatureHaar& feature ) |
||||
{ |
||||
featureEvaluator->getFeatures( id ) = feature; |
||||
return true; |
||||
} |
||||
|
||||
bool TrackerFeatureHAAR::swapFeature( int source, int target ) |
||||
{ |
||||
CvHaarEvaluator::FeatureHaar feature = featureEvaluator->getFeatures( source ); |
||||
featureEvaluator->getFeatures( source ) = featureEvaluator->getFeatures( target ); |
||||
featureEvaluator->getFeatures( target ) = feature; |
||||
return true; |
||||
} |
||||
|
||||
bool TrackerFeatureHAAR::extractSelected( const std::vector<int> selFeatures, const std::vector<Mat>& images, Mat& response ) |
||||
{ |
||||
if( images.empty() ) |
||||
{ |
||||
return false; |
||||
} |
||||
|
||||
int numFeatures = featureEvaluator->getNumFeatures(); |
||||
int numSelFeatures = selFeatures.size(); |
||||
|
||||
//response = Mat_<float>( Size( images.size(), numFeatures ) );
|
||||
response.create( Size( images.size(), numFeatures ), CV_32F ); |
||||
response.setTo( 0 ); |
||||
|
||||
//double t = getTickCount();
|
||||
//for each sample compute #n_feature -> put each feature (n Rect) in response
|
||||
for ( size_t i = 0; i < images.size(); i++ ) |
||||
{ |
||||
int c = images[i].cols; |
||||
int r = images[i].rows; |
||||
for ( int j = 0; j < numSelFeatures; j++ ) |
||||
{ |
||||
float res = 0; |
||||
//const feat
|
||||
CvHaarEvaluator::FeatureHaar& feature = featureEvaluator->getFeatures( selFeatures[j] ); |
||||
feature.eval( images[i], Rect( 0, 0, c, r ), &res ); |
||||
//( Mat_<float>( response ) )( j, i ) = res;
|
||||
response.at<float>( selFeatures[j], i ) = res; |
||||
} |
||||
} |
||||
//t = ( (double) getTickCount() - t ) / getTickFrequency();
|
||||
//std::cout << "StrongClassifierDirectSelection time " << t << std::endl;
|
||||
|
||||
return true; |
||||
} |
||||
|
||||
class Parallel_compute : public cv::ParallelLoopBody |
||||
{ |
||||
private: |
||||
Ptr<CvHaarEvaluator> featureEvaluator; |
||||
std::vector<Mat> images; |
||||
Mat response; |
||||
//std::vector<CvHaarEvaluator::FeatureHaar> features;
|
||||
public: |
||||
Parallel_compute( Ptr<CvHaarEvaluator>& fe, const std::vector<Mat>& img, Mat& resp ) : |
||||
featureEvaluator( fe ), |
||||
images( img ), |
||||
response( resp ) |
||||
{ |
||||
|
||||
//features = featureEvaluator->getFeatures();
|
||||
} |
||||
|
||||
virtual void operator()( const cv::Range &r ) const |
||||
{ |
||||
for ( register int jf = r.start; jf != r.end; ++jf ) |
||||
{ |
||||
int cols = images[jf].cols; |
||||
int rows = images[jf].rows; |
||||
for ( int j = 0; j < featureEvaluator->getNumFeatures(); j++ ) |
||||
{ |
||||
float res = 0; |
||||
featureEvaluator->getFeatures()[j].eval( images[jf], Rect( 0, 0, cols, rows ), &res ); |
||||
( Mat_<float>( response ) )( j, jf ) = res; |
||||
} |
||||
} |
||||
} |
||||
}; |
||||
|
||||
bool TrackerFeatureHAAR::computeImpl( const std::vector<Mat>& images, Mat& response ) |
||||
{ |
||||
if( images.empty() ) |
||||
{ |
||||
return false; |
||||
} |
||||
|
||||
int numFeatures = featureEvaluator->getNumFeatures(); |
||||
|
||||
response = Mat_<float>( Size( images.size(), numFeatures ) ); |
||||
|
||||
std::vector<CvHaarEvaluator::FeatureHaar> f = featureEvaluator->getFeatures(); |
||||
//for each sample compute #n_feature -> put each feature (n Rect) in response
|
||||
parallel_for_( Range( 0, images.size() ), Parallel_compute( featureEvaluator, images, response ) ); |
||||
|
||||
/*for ( size_t i = 0; i < images.size(); i++ )
|
||||
{ |
||||
int c = images[i].cols; |
||||
int r = images[i].rows; |
||||
for ( int j = 0; j < numFeatures; j++ ) |
||||
{ |
||||
float res = 0; |
||||
featureEvaluator->getFeatures( j ).eval( images[i], Rect( 0, 0, c, r ), &res ); |
||||
( Mat_<float>( response ) )( j, i ) = res; |
||||
} |
||||
}*/ |
||||
|
||||
return true; |
||||
} |
||||
|
||||
void TrackerFeatureHAAR::selection( Mat& /*response*/, int /*npoints*/) |
||||
{ |
||||
|
||||
} |
||||
|
||||
/**
|
||||
* TrackerFeatureLBP |
||||
*/ |
||||
TrackerFeatureLBP::TrackerFeatureLBP() |
||||
{ |
||||
className = "LBP"; |
||||
} |
||||
|
||||
TrackerFeatureLBP::~TrackerFeatureLBP() |
||||
{ |
||||
|
||||
} |
||||
|
||||
bool TrackerFeatureLBP::computeImpl( const std::vector<Mat>& /*images*/, Mat& /*response*/) |
||||
{ |
||||
return false; |
||||
} |
||||
|
||||
void TrackerFeatureLBP::selection( Mat& /*response*/, int /*npoints*/) |
||||
{ |
||||
|
||||
} |
||||
|
||||
} /* namespace cv */ |
@ -0,0 +1,142 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
/*
|
||||
* TrackerFeatureSet |
||||
*/ |
||||
|
||||
/*
|
||||
* Constructor |
||||
*/ |
||||
TrackerFeatureSet::TrackerFeatureSet() |
||||
{ |
||||
blockAddTrackerFeature = false; |
||||
} |
||||
|
||||
/*
|
||||
* Destructor |
||||
*/ |
||||
TrackerFeatureSet::~TrackerFeatureSet() |
||||
{ |
||||
|
||||
} |
||||
|
||||
void TrackerFeatureSet::extraction( const std::vector<Mat>& images ) |
||||
{ |
||||
|
||||
clearResponses(); |
||||
responses.resize( features.size() ); |
||||
|
||||
for ( size_t i = 0; i < features.size(); i++ ) |
||||
{ |
||||
Mat response; |
||||
features[i].second->compute( images, response ); |
||||
responses[i] = response; |
||||
} |
||||
|
||||
if( !blockAddTrackerFeature ) |
||||
{ |
||||
blockAddTrackerFeature = true; |
||||
} |
||||
} |
||||
|
||||
void TrackerFeatureSet::selection() |
||||
{ |
||||
|
||||
} |
||||
|
||||
void TrackerFeatureSet::removeOutliers() |
||||
{ |
||||
|
||||
} |
||||
|
||||
bool TrackerFeatureSet::addTrackerFeature( String trackerFeatureType ) |
||||
{ |
||||
if( blockAddTrackerFeature ) |
||||
{ |
||||
return false; |
||||
} |
||||
Ptr<TrackerFeature> feature = TrackerFeature::create( trackerFeatureType ); |
||||
|
||||
if( feature == 0 ) |
||||
{ |
||||
return false; |
||||
} |
||||
|
||||
features.push_back( std::make_pair( trackerFeatureType, feature ) ); |
||||
|
||||
return true; |
||||
} |
||||
|
||||
bool TrackerFeatureSet::addTrackerFeature( Ptr<TrackerFeature>& feature ) |
||||
{ |
||||
if( blockAddTrackerFeature ) |
||||
{ |
||||
return false; |
||||
} |
||||
|
||||
String trackerFeatureType = feature->getClassName(); |
||||
features.push_back( std::make_pair( trackerFeatureType, feature ) ); |
||||
|
||||
return true; |
||||
} |
||||
|
||||
const std::vector<std::pair<String, Ptr<TrackerFeature> > >& TrackerFeatureSet::getTrackerFeature() const |
||||
{ |
||||
return features; |
||||
} |
||||
|
||||
const std::vector<Mat>& TrackerFeatureSet::getResponses() const |
||||
{ |
||||
return responses; |
||||
} |
||||
|
||||
void TrackerFeatureSet::clearResponses() |
||||
{ |
||||
responses.clear(); |
||||
} |
||||
|
||||
} /* namespace cv */ |
@ -0,0 +1,273 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
#include "trackerMILModel.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
/*
|
||||
* TrackerMIL |
||||
*/ |
||||
|
||||
/*
|
||||
* Parameters |
||||
*/ |
||||
TrackerMIL::Params::Params() |
||||
{ |
||||
samplerInitInRadius = 3; |
||||
samplerTrackInRadius = 4; |
||||
samplerSearchWinSize = 25; |
||||
samplerInitMaxNegNum = 65; |
||||
samplerTrackMaxPosNum = 100000; |
||||
samplerTrackMaxNegNum = 65; |
||||
featureSetNumFeatures = 250; |
||||
} |
||||
|
||||
void TrackerMIL::Params::read( const cv::FileNode& fn ) |
||||
{ |
||||
samplerInitInRadius = fn["samplerInitInRadius"]; |
||||
samplerSearchWinSize = fn["samplerSearchWinSize"]; |
||||
samplerInitInRadius = fn["samplerInitInRadius"]; |
||||
samplerTrackInRadius = fn["samplerTrackInRadius"]; |
||||
samplerTrackMaxPosNum = fn["samplerTrackMaxPosNum"]; |
||||
samplerTrackMaxNegNum = fn["samplerTrackMaxNegNum"]; |
||||
featureSetNumFeatures = fn["featureSetNumFeatures"]; |
||||
} |
||||
|
||||
void TrackerMIL::Params::write( cv::FileStorage& fs ) const |
||||
{ |
||||
fs << "samplerInitInRadius" << samplerInitInRadius; |
||||
fs << "samplerSearchWinSize" << samplerSearchWinSize; |
||||
fs << "samplerInitInRadius" << samplerInitInRadius; |
||||
fs << "samplerTrackInRadius" << samplerTrackInRadius; |
||||
fs << "samplerTrackMaxPosNum" << samplerTrackMaxPosNum; |
||||
fs << "samplerTrackMaxNegNum" << samplerTrackMaxNegNum; |
||||
fs << "featureSetNumFeatures" << featureSetNumFeatures; |
||||
|
||||
} |
||||
|
||||
/*
|
||||
* Constructor |
||||
*/ |
||||
TrackerMIL::TrackerMIL( const TrackerMIL::Params ¶meters ) : |
||||
params( parameters ) |
||||
{ |
||||
isInit = false; |
||||
} |
||||
|
||||
/*
|
||||
* Destructor |
||||
*/ |
||||
TrackerMIL::~TrackerMIL() |
||||
{ |
||||
|
||||
} |
||||
|
||||
void TrackerMIL::read( const cv::FileNode& fn ) |
||||
{ |
||||
params.read( fn ); |
||||
} |
||||
|
||||
void TrackerMIL::write( cv::FileStorage& fs ) const |
||||
{ |
||||
params.write( fs ); |
||||
} |
||||
|
||||
void TrackerMIL::compute_integral( const Mat & img, Mat & ii_img ) |
||||
{ |
||||
Mat ii; |
||||
std::vector<Mat> ii_imgs; |
||||
integral( img, ii, CV_32F ); |
||||
split( ii, ii_imgs ); |
||||
ii_img = ii_imgs[0]; |
||||
} |
||||
|
||||
bool TrackerMIL::initImpl( const Mat& image, const Rect& boundingBox ) |
||||
{ |
||||
Mat intImage; |
||||
compute_integral( image, intImage ); |
||||
TrackerSamplerCSC::Params CSCparameters; |
||||
CSCparameters.initInRad = params.samplerInitInRadius; |
||||
CSCparameters.searchWinSize = params.samplerSearchWinSize; |
||||
CSCparameters.initMaxNegNum = params.samplerInitMaxNegNum; |
||||
CSCparameters.trackInPosRad = params.samplerTrackInRadius; |
||||
CSCparameters.trackMaxPosNum = params.samplerTrackMaxPosNum; |
||||
CSCparameters.trackMaxNegNum = params.samplerTrackMaxNegNum; |
||||
|
||||
Ptr<TrackerSamplerAlgorithm> CSCSampler = Ptr<TrackerSamplerCSC>( new TrackerSamplerCSC( CSCparameters ) ); |
||||
if( !sampler->addTrackerSamplerAlgorithm( CSCSampler ) ) |
||||
return false; |
||||
|
||||
//or add CSC sampler with default parameters
|
||||
//sampler->addTrackerSamplerAlgorithm( "CSC" );
|
||||
|
||||
//Positive sampling
|
||||
CSCSampler.staticCast<TrackerSamplerCSC>()->setMode( TrackerSamplerCSC::MODE_INIT_POS ); |
||||
sampler->sampling( intImage, boundingBox ); |
||||
std::vector<Mat> posSamples = sampler->getSamples(); |
||||
|
||||
//Negative sampling
|
||||
CSCSampler.staticCast<TrackerSamplerCSC>()->setMode( TrackerSamplerCSC::MODE_INIT_NEG ); |
||||
sampler->sampling( intImage, boundingBox ); |
||||
std::vector<Mat> negSamples = sampler->getSamples(); |
||||
|
||||
if( posSamples.empty() || negSamples.empty() ) |
||||
return false; |
||||
|
||||
//compute HAAR features
|
||||
TrackerFeatureHAAR::Params HAARparameters; |
||||
HAARparameters.numFeatures = params.featureSetNumFeatures; |
||||
HAARparameters.rectSize = Size( boundingBox.width, boundingBox.height ); |
||||
HAARparameters.isIntegral = true; |
||||
Ptr<TrackerFeature> trackerFeature = Ptr<TrackerFeatureHAAR>( new TrackerFeatureHAAR( HAARparameters ) ); |
||||
featureSet->addTrackerFeature( trackerFeature ); |
||||
|
||||
featureSet->extraction( posSamples ); |
||||
const std::vector<Mat> posResponse = featureSet->getResponses(); |
||||
|
||||
featureSet->extraction( negSamples ); |
||||
const std::vector<Mat> negResponse = featureSet->getResponses(); |
||||
|
||||
model = Ptr<TrackerMILModel>( new TrackerMILModel( boundingBox ) ); |
||||
Ptr<TrackerStateEstimatorMILBoosting> stateEstimator = Ptr<TrackerStateEstimatorMILBoosting>( |
||||
new TrackerStateEstimatorMILBoosting( params.featureSetNumFeatures ) ); |
||||
model->setTrackerStateEstimator( stateEstimator ); |
||||
|
||||
//Run model estimation and update
|
||||
model.staticCast<TrackerMILModel>()->setMode( TrackerMILModel::MODE_POSITIVE, posSamples ); |
||||
model->modelEstimation( posResponse ); |
||||
model.staticCast<TrackerMILModel>()->setMode( TrackerMILModel::MODE_NEGATIVE, negSamples ); |
||||
model->modelEstimation( negResponse ); |
||||
model->modelUpdate(); |
||||
|
||||
return true; |
||||
} |
||||
|
||||
bool TrackerMIL::updateImpl( const Mat& image, Rect& boundingBox ) |
||||
{ |
||||
Mat intImage; |
||||
compute_integral( image, intImage ); |
||||
|
||||
//get the last location [AAM] X(k-1)
|
||||
Ptr<TrackerTargetState> lastLocation = model->getLastTargetState(); |
||||
Rect lastBoundingBox( lastLocation->getTargetPosition().x, lastLocation->getTargetPosition().y, lastLocation->getTargetWidth(), |
||||
lastLocation->getTargetHeight() ); |
||||
|
||||
//sampling new frame based on last location
|
||||
( sampler->getSamplers().at( 0 ).second ).staticCast<TrackerSamplerCSC>()->setMode( TrackerSamplerCSC::MODE_DETECT ); |
||||
sampler->sampling( intImage, lastBoundingBox ); |
||||
std::vector<Mat> detectSamples = sampler->getSamples(); |
||||
if( detectSamples.empty() ) |
||||
return false; |
||||
|
||||
/*//TODO debug samples
|
||||
Mat f; |
||||
image.copyTo(f); |
||||
|
||||
for( size_t i = 0; i < detectSamples.size(); i=i+10 ) |
||||
{ |
||||
Size sz; |
||||
Point off; |
||||
detectSamples.at(i).locateROI(sz, off); |
||||
rectangle(f, Rect(off.x,off.y,detectSamples.at(i).cols,detectSamples.at(i).rows), Scalar(255,0,0), 1); |
||||
}*/ |
||||
|
||||
//extract features from new samples
|
||||
featureSet->extraction( detectSamples ); |
||||
std::vector<Mat> response = featureSet->getResponses(); |
||||
|
||||
//predict new location
|
||||
ConfidenceMap cmap; |
||||
model.staticCast<TrackerMILModel>()->setMode( TrackerMILModel::MODE_ESTIMATON, detectSamples ); |
||||
model.staticCast<TrackerMILModel>()->responseToConfidenceMap( response, cmap ); |
||||
model->getTrackerStateEstimator().staticCast<TrackerStateEstimatorMILBoosting>()->setCurrentConfidenceMap( cmap ); |
||||
|
||||
if( !model->runStateEstimator() ) |
||||
{ |
||||
return false; |
||||
} |
||||
|
||||
Ptr<TrackerTargetState> currentState = model->getLastTargetState(); |
||||
boundingBox = Rect( currentState->getTargetPosition().x, currentState->getTargetPosition().y, currentState->getTargetWidth(), |
||||
currentState->getTargetHeight() ); |
||||
|
||||
/*//TODO debug
|
||||
rectangle(f, lastBoundingBox, Scalar(0,255,0), 1); |
||||
rectangle(f, boundingBox, Scalar(0,0,255), 1); |
||||
imshow("f", f); |
||||
//waitKey( 0 );*/
|
||||
|
||||
//sampling new frame based on new location
|
||||
//Positive sampling
|
||||
( sampler->getSamplers().at( 0 ).second ).staticCast<TrackerSamplerCSC>()->setMode( TrackerSamplerCSC::MODE_INIT_POS ); |
||||
sampler->sampling( intImage, boundingBox ); |
||||
std::vector<Mat> posSamples = sampler->getSamples(); |
||||
|
||||
//Negative sampling
|
||||
( sampler->getSamplers().at( 0 ).second ).staticCast<TrackerSamplerCSC>()->setMode( TrackerSamplerCSC::MODE_INIT_NEG ); |
||||
sampler->sampling( intImage, boundingBox ); |
||||
std::vector<Mat> negSamples = sampler->getSamples(); |
||||
|
||||
if( posSamples.empty() || negSamples.empty() ) |
||||
return false; |
||||
|
||||
//extract features
|
||||
featureSet->extraction( posSamples ); |
||||
std::vector<Mat> posResponse = featureSet->getResponses(); |
||||
|
||||
featureSet->extraction( negSamples ); |
||||
std::vector<Mat> negResponse = featureSet->getResponses(); |
||||
|
||||
//model estimate
|
||||
model.staticCast<TrackerMILModel>()->setMode( TrackerMILModel::MODE_POSITIVE, posSamples ); |
||||
model->modelEstimation( posResponse ); |
||||
model.staticCast<TrackerMILModel>()->setMode( TrackerMILModel::MODE_NEGATIVE, negSamples ); |
||||
model->modelEstimation( negResponse ); |
||||
|
||||
//model update
|
||||
model->modelUpdate(); |
||||
|
||||
return true; |
||||
} |
||||
|
||||
} /* namespace cv */ |
@ -0,0 +1,126 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
#include "trackerMILModel.hpp" |
||||
|
||||
/**
|
||||
* TrackerMILModel |
||||
*/ |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
TrackerMILModel::TrackerMILModel( const Rect& boundingBox ) |
||||
{ |
||||
currentSample.clear(); |
||||
mode = MODE_POSITIVE; |
||||
width = boundingBox.width; |
||||
height = boundingBox.height; |
||||
|
||||
Ptr<TrackerStateEstimatorMILBoosting::TrackerMILTargetState> initState = Ptr<TrackerStateEstimatorMILBoosting::TrackerMILTargetState>( |
||||
new TrackerStateEstimatorMILBoosting::TrackerMILTargetState( Point2f( boundingBox.x, boundingBox.y ), boundingBox.width, boundingBox.height, |
||||
true, Mat() ) ); |
||||
trajectory.push_back( initState ); |
||||
} |
||||
|
||||
void TrackerMILModel::responseToConfidenceMap( const std::vector<Mat>& responses, ConfidenceMap& confidenceMap ) |
||||
{ |
||||
if( currentSample.empty() ) |
||||
{ |
||||
CV_Error( -1, "The samples in Model estimation are empty" ); |
||||
return; |
||||
} |
||||
|
||||
for ( size_t i = 0; i < responses.size(); i++ ) |
||||
{ |
||||
//for each column (one sample) there are #num_feature
|
||||
//get informations from currentSample
|
||||
for ( int j = 0; j < responses.at( i ).cols; j++ ) |
||||
{ |
||||
|
||||
Size currentSize; |
||||
Point currentOfs; |
||||
currentSample.at( j ).locateROI( currentSize, currentOfs ); |
||||
bool foreground = false; |
||||
if( mode == MODE_POSITIVE || mode == MODE_ESTIMATON ) |
||||
{ |
||||
foreground = true; |
||||
} |
||||
else if( mode == MODE_NEGATIVE ) |
||||
{ |
||||
foreground = false; |
||||
} |
||||
|
||||
//get the column of the HAAR responses
|
||||
Mat singleResponse = responses.at( i ).col( j ); |
||||
|
||||
//create the state
|
||||
Ptr<TrackerStateEstimatorMILBoosting::TrackerMILTargetState> currentState = Ptr<TrackerStateEstimatorMILBoosting::TrackerMILTargetState>( |
||||
new TrackerStateEstimatorMILBoosting::TrackerMILTargetState( currentOfs, width, height, foreground, singleResponse ) ); |
||||
|
||||
confidenceMap.push_back( std::make_pair( currentState, 0 ) ); |
||||
|
||||
} |
||||
|
||||
} |
||||
} |
||||
|
||||
void TrackerMILModel::modelEstimationImpl( const std::vector<Mat>& responses ) |
||||
{ |
||||
responseToConfidenceMap( responses, currentConfidenceMap ); |
||||
|
||||
} |
||||
|
||||
void TrackerMILModel::modelUpdateImpl() |
||||
{ |
||||
|
||||
} |
||||
|
||||
void TrackerMILModel::setMode( int trainingMode, const std::vector<Mat>& samples ) |
||||
{ |
||||
currentSample.clear(); |
||||
currentSample = samples; |
||||
|
||||
mode = trainingMode; |
||||
} |
||||
|
||||
} |
@ -0,0 +1,103 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_TRACKER_MIL_MODEL_HPP__ |
||||
#define __OPENCV_TRACKER_MIL_MODEL_HPP__ |
||||
|
||||
#include "opencv2/core.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
/**
|
||||
* \brief Implementation of TrackerModel for MIL algorithm |
||||
*/ |
||||
class TrackerMILModel : public TrackerModel |
||||
{ |
||||
public: |
||||
enum
|
||||
{ |
||||
MODE_POSITIVE = 1, // mode for positive features
|
||||
MODE_NEGATIVE = 2, // mode for negative features
|
||||
MODE_ESTIMATON = 3 // mode for estimation step
|
||||
}; |
||||
|
||||
/**
|
||||
* \brief Constructor |
||||
* \param boundingBox The first boundingBox |
||||
*/ |
||||
TrackerMILModel( const Rect& boundingBox ); |
||||
|
||||
/**
|
||||
* \brief Destructor |
||||
*/ |
||||
~TrackerMILModel() |
||||
{ |
||||
} |
||||
; |
||||
|
||||
/**
|
||||
* \brief Set the mode |
||||
*/ |
||||
void setMode( int trainingMode, const std::vector<Mat>& samples ); |
||||
|
||||
/**
|
||||
* \brief Create the ConfidenceMap from a list of responses |
||||
* \param responses The list of the responses |
||||
* \param confidenceMap The output |
||||
*/ |
||||
void responseToConfidenceMap( const std::vector<Mat>& responses, ConfidenceMap& confidenceMap ); |
||||
|
||||
protected: |
||||
void modelEstimationImpl( const std::vector<Mat>& responses ); |
||||
void modelUpdateImpl(); |
||||
|
||||
private: |
||||
int mode; |
||||
std::vector<Mat> currentSample; |
||||
|
||||
int width; //initial width of the boundingBox
|
||||
int height; //initial height of the boundingBox
|
||||
}; |
||||
|
||||
} /* namespace cv */ |
||||
|
||||
#endif |
@ -0,0 +1,178 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
/*
|
||||
* TrackerModel |
||||
*/ |
||||
|
||||
TrackerModel::TrackerModel() |
||||
{ |
||||
stateEstimator = Ptr<TrackerStateEstimator>(); |
||||
maxCMLength = 1; |
||||
} |
||||
|
||||
TrackerModel::~TrackerModel() |
||||
{ |
||||
|
||||
} |
||||
|
||||
bool TrackerModel::setTrackerStateEstimator( Ptr<TrackerStateEstimator> trackerStateEstimator ) |
||||
{ |
||||
if( stateEstimator != 0 ) |
||||
{ |
||||
return false; |
||||
} |
||||
|
||||
stateEstimator = trackerStateEstimator; |
||||
return true; |
||||
} |
||||
|
||||
Ptr<TrackerStateEstimator> TrackerModel::getTrackerStateEstimator() const |
||||
{ |
||||
return stateEstimator; |
||||
} |
||||
|
||||
void TrackerModel::modelEstimation( const std::vector<Mat>& responses ) |
||||
{ |
||||
modelEstimationImpl( responses ); |
||||
|
||||
} |
||||
|
||||
void TrackerModel::clearCurrentConfidenceMap() |
||||
{ |
||||
currentConfidenceMap.clear(); |
||||
} |
||||
|
||||
void TrackerModel::modelUpdate() |
||||
{ |
||||
modelUpdateImpl(); |
||||
|
||||
if( maxCMLength != -1 && (int) confidenceMaps.size() >= maxCMLength - 1 ) |
||||
{ |
||||
int l = maxCMLength / 2; |
||||
confidenceMaps.erase( confidenceMaps.begin(), confidenceMaps.begin() + l ); |
||||
} |
||||
if( maxCMLength != -1 && (int) trajectory.size() >= maxCMLength - 1 ) |
||||
{ |
||||
int l = maxCMLength / 2; |
||||
trajectory.erase( trajectory.begin(), trajectory.begin() + l ); |
||||
} |
||||
confidenceMaps.push_back( currentConfidenceMap ); |
||||
stateEstimator->update( confidenceMaps ); |
||||
|
||||
clearCurrentConfidenceMap(); |
||||
|
||||
} |
||||
|
||||
bool TrackerModel::runStateEstimator() |
||||
{ |
||||
if( stateEstimator == 0 ) |
||||
{ |
||||
CV_Error( -1, "Tracker state estimator is not setted" ); |
||||
return false; |
||||
} |
||||
Ptr<TrackerTargetState> targetState = stateEstimator->estimate( confidenceMaps ); |
||||
if( targetState == 0 ) |
||||
return false; |
||||
|
||||
setLastTargetState( targetState ); |
||||
return true; |
||||
} |
||||
|
||||
void TrackerModel::setLastTargetState( const Ptr<TrackerTargetState>& lastTargetState ) |
||||
{ |
||||
trajectory.push_back( lastTargetState ); |
||||
} |
||||
|
||||
Ptr<TrackerTargetState> TrackerModel::getLastTargetState() const |
||||
{ |
||||
return trajectory.back(); |
||||
} |
||||
|
||||
const std::vector<ConfidenceMap>& TrackerModel::getConfidenceMaps() const |
||||
{ |
||||
return confidenceMaps; |
||||
} |
||||
|
||||
const ConfidenceMap& TrackerModel::getLastConfidenceMap() const |
||||
{ |
||||
return confidenceMaps.back(); |
||||
} |
||||
|
||||
/*
|
||||
* TrackerTargetState |
||||
*/ |
||||
|
||||
Point2f TrackerTargetState::getTargetPosition() const |
||||
{ |
||||
return targetPosition; |
||||
} |
||||
|
||||
void TrackerTargetState::setTargetPosition( const Point2f& position ) |
||||
{ |
||||
targetPosition = position; |
||||
} |
||||
|
||||
int TrackerTargetState::getTargetWidth() const |
||||
{ |
||||
return targetWidth; |
||||
} |
||||
|
||||
void TrackerTargetState::setTargetWidth( int width ) |
||||
{ |
||||
targetWidth = width; |
||||
} |
||||
int TrackerTargetState::getTargetHeight() const |
||||
{ |
||||
return targetHeight; |
||||
} |
||||
|
||||
void TrackerTargetState::setTargetHeight( int height ) |
||||
{ |
||||
targetHeight = height; |
||||
} |
||||
|
||||
} /* namespace cv */ |
@ -0,0 +1,142 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
/*
|
||||
* TrackerSampler |
||||
*/ |
||||
|
||||
/*
|
||||
* Constructor |
||||
*/ |
||||
TrackerSampler::TrackerSampler() |
||||
{ |
||||
blockAddTrackerSampler = false; |
||||
} |
||||
|
||||
/*
|
||||
* Destructor |
||||
*/ |
||||
TrackerSampler::~TrackerSampler() |
||||
{ |
||||
|
||||
} |
||||
|
||||
void TrackerSampler::sampling( const Mat& image, Rect boundingBox ) |
||||
{ |
||||
|
||||
clearSamples(); |
||||
|
||||
for ( size_t i = 0; i < samplers.size(); i++ ) |
||||
{ |
||||
std::vector<Mat> current_samples; |
||||
samplers[i].second->sampling( image, boundingBox, current_samples ); |
||||
|
||||
//push in samples all current_samples
|
||||
for ( size_t j = 0; j < current_samples.size(); j++ ) |
||||
{ |
||||
std::vector<Mat>::iterator it = samples.end(); |
||||
samples.insert( it, current_samples.at( j ) ); |
||||
} |
||||
} |
||||
|
||||
if( !blockAddTrackerSampler ) |
||||
{ |
||||
blockAddTrackerSampler = true; |
||||
} |
||||
} |
||||
|
||||
bool TrackerSampler::addTrackerSamplerAlgorithm( String trackerSamplerAlgorithmType ) |
||||
{ |
||||
if( blockAddTrackerSampler ) |
||||
{ |
||||
return false; |
||||
} |
||||
Ptr<TrackerSamplerAlgorithm> sampler = TrackerSamplerAlgorithm::create( trackerSamplerAlgorithmType ); |
||||
|
||||
if( sampler == 0 ) |
||||
{ |
||||
return false; |
||||
} |
||||
|
||||
samplers.push_back( std::make_pair( trackerSamplerAlgorithmType, sampler ) ); |
||||
|
||||
return true; |
||||
} |
||||
|
||||
bool TrackerSampler::addTrackerSamplerAlgorithm( Ptr<TrackerSamplerAlgorithm>& sampler ) |
||||
{ |
||||
if( blockAddTrackerSampler ) |
||||
{ |
||||
return false; |
||||
} |
||||
|
||||
if( sampler == 0 ) |
||||
{ |
||||
return false; |
||||
} |
||||
|
||||
String trackerSamplerAlgorithmType = sampler->getClassName(); |
||||
samplers.push_back( std::make_pair( trackerSamplerAlgorithmType, sampler ) ); |
||||
|
||||
return true; |
||||
} |
||||
|
||||
const std::vector<std::pair<String, Ptr<TrackerSamplerAlgorithm> > >& TrackerSampler::getSamplers() const |
||||
{ |
||||
return samplers; |
||||
} |
||||
|
||||
const std::vector<Mat>& TrackerSampler::getSamples() const |
||||
{ |
||||
return samples; |
||||
} |
||||
|
||||
void TrackerSampler::clearSamples() |
||||
{ |
||||
samples.clear(); |
||||
} |
||||
|
||||
} /* namespace cv */ |
@ -0,0 +1,382 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
#include <time.h> |
||||
|
||||
#ifdef _WIN32 |
||||
#define TIME( arg ) (((double) clock()) / CLOCKS_PER_SEC) |
||||
#else |
||||
#define TIME( arg ) (time( arg )) |
||||
#endif |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
/*
|
||||
* TrackerSamplerAlgorithm |
||||
*/ |
||||
|
||||
TrackerSamplerAlgorithm::~TrackerSamplerAlgorithm() |
||||
{ |
||||
|
||||
} |
||||
|
||||
bool TrackerSamplerAlgorithm::sampling( const Mat& image, Rect boundingBox, std::vector<Mat>& sample ) |
||||
{ |
||||
if( image.empty() ) |
||||
return false; |
||||
|
||||
return samplingImpl( image, boundingBox, sample ); |
||||
} |
||||
|
||||
Ptr<TrackerSamplerAlgorithm> TrackerSamplerAlgorithm::create( const String& trackerSamplerType ) |
||||
{ |
||||
if( trackerSamplerType.find( "CSC" ) == 0 ) |
||||
{ |
||||
return Ptr<TrackerSamplerCSC>( new TrackerSamplerCSC() ); |
||||
} |
||||
|
||||
if( trackerSamplerType.find( "CS" ) == 0 ) |
||||
{ |
||||
return Ptr<TrackerSamplerCS>( new TrackerSamplerCS() ); |
||||
} |
||||
|
||||
CV_Error( -1, "Tracker sampler algorithm type not supported" ); |
||||
return Ptr<TrackerSamplerAlgorithm>(); |
||||
} |
||||
|
||||
String TrackerSamplerAlgorithm::getClassName() const |
||||
{ |
||||
return className; |
||||
} |
||||
|
||||
/**
|
||||
* TrackerSamplerCSC |
||||
*/ |
||||
|
||||
/**
|
||||
* Parameters |
||||
*/ |
||||
|
||||
TrackerSamplerCSC::Params::Params() |
||||
{ |
||||
initInRad = 3; |
||||
initMaxNegNum = 65; |
||||
searchWinSize = 25; |
||||
trackInPosRad = 4; |
||||
trackMaxNegNum = 65; |
||||
trackMaxPosNum = 100000; |
||||
|
||||
} |
||||
|
||||
TrackerSamplerCSC::TrackerSamplerCSC( const TrackerSamplerCSC::Params ¶meters ) : |
||||
params( parameters ) |
||||
{ |
||||
className = "CSC"; |
||||
mode = MODE_INIT_POS; |
||||
rng = RNG( uint64( TIME( 0 ) ) ); |
||||
|
||||
} |
||||
|
||||
TrackerSamplerCSC::~TrackerSamplerCSC() |
||||
{ |
||||
|
||||
} |
||||
|
||||
bool TrackerSamplerCSC::samplingImpl( const Mat& image, Rect boundingBox, std::vector<Mat>& sample ) |
||||
{ |
||||
float inrad = 0; |
||||
float outrad = 0; |
||||
int maxnum = 0; |
||||
|
||||
switch ( mode ) |
||||
{ |
||||
case MODE_INIT_POS: |
||||
inrad = params.initInRad; |
||||
sample = sampleImage( image, boundingBox.x, boundingBox.y, boundingBox.width, boundingBox.height, inrad ); |
||||
break; |
||||
case MODE_INIT_NEG: |
||||
inrad = 2.0f * params.searchWinSize; |
||||
outrad = 1.5f * params.initInRad; |
||||
maxnum = params.initMaxNegNum; |
||||
sample = sampleImage( image, boundingBox.x, boundingBox.y, boundingBox.width, boundingBox.height, inrad, outrad, maxnum ); |
||||
break; |
||||
case MODE_TRACK_POS: |
||||
inrad = params.trackInPosRad; |
||||
outrad = 0; |
||||
maxnum = params.trackMaxPosNum; |
||||
sample = sampleImage( image, boundingBox.x, boundingBox.y, boundingBox.width, boundingBox.height, inrad, outrad, maxnum ); |
||||
break; |
||||
case MODE_TRACK_NEG: |
||||
inrad = 1.5f * params.searchWinSize; |
||||
outrad = params.trackInPosRad + 5; |
||||
maxnum = params.trackMaxNegNum; |
||||
sample = sampleImage( image, boundingBox.x, boundingBox.y, boundingBox.width, boundingBox.height, inrad, outrad, maxnum ); |
||||
break; |
||||
case MODE_DETECT: |
||||
inrad = params.searchWinSize; |
||||
sample = sampleImage( image, boundingBox.x, boundingBox.y, boundingBox.width, boundingBox.height, inrad ); |
||||
break; |
||||
default: |
||||
inrad = params.initInRad; |
||||
sample = sampleImage( image, boundingBox.x, boundingBox.y, boundingBox.width, boundingBox.height, inrad ); |
||||
break; |
||||
} |
||||
return false; |
||||
} |
||||
|
||||
void TrackerSamplerCSC::setMode( int samplingMode ) |
||||
{ |
||||
mode = samplingMode; |
||||
} |
||||
|
||||
std::vector<Mat> TrackerSamplerCSC::sampleImage( const Mat& img, int x, int y, int w, int h, float inrad, float outrad, int maxnum ) |
||||
{ |
||||
int rowsz = img.rows - h - 1; |
||||
int colsz = img.cols - w - 1; |
||||
float inradsq = inrad * inrad; |
||||
float outradsq = outrad * outrad; |
||||
int dist; |
||||
|
||||
uint minrow = max( 0, (int) y - (int) inrad ); |
||||
uint maxrow = min( (int) rowsz - 1, (int) y + (int) inrad ); |
||||
uint mincol = max( 0, (int) x - (int) inrad ); |
||||
uint maxcol = min( (int) colsz - 1, (int) x + (int) inrad ); |
||||
|
||||
//fprintf(stderr,"inrad=%f minrow=%d maxrow=%d mincol=%d maxcol=%d\n",inrad,minrow,maxrow,mincol,maxcol);
|
||||
|
||||
std::vector<Mat> samples; |
||||
samples.resize( ( maxrow - minrow + 1 ) * ( maxcol - mincol + 1 ) ); |
||||
int i = 0; |
||||
|
||||
float prob = ( (float) ( maxnum ) ) / samples.size(); |
||||
|
||||
for ( int r = minrow; r <= int( maxrow ); r++ ) |
||||
for ( int c = mincol; c <= int( maxcol ); c++ ) |
||||
{ |
||||
dist = ( y - r ) * ( y - r ) + ( x - c ) * ( x - c ); |
||||
if( float( rng.uniform( 0.f, 1.f ) ) < prob && dist < inradsq && dist >= outradsq ) |
||||
{ |
||||
samples[i] = img( Rect( c, r, w, h ) ); |
||||
i++; |
||||
} |
||||
} |
||||
|
||||
samples.resize( min( i, maxnum ) ); |
||||
return samples; |
||||
} |
||||
; |
||||
|
||||
/**
|
||||
* TrackerSamplerCS |
||||
*/ |
||||
TrackerSamplerCS::Params::Params() |
||||
{ |
||||
overlap = 0.99f; |
||||
searchFactor = 2; |
||||
} |
||||
|
||||
TrackerSamplerCS::TrackerSamplerCS( const TrackerSamplerCS::Params ¶meters ) : |
||||
params( parameters ) |
||||
{ |
||||
className = "CS"; |
||||
mode = MODE_POSITIVE; |
||||
} |
||||
|
||||
void TrackerSamplerCS::setMode( int samplingMode ) |
||||
{ |
||||
mode = samplingMode; |
||||
} |
||||
|
||||
TrackerSamplerCS::~TrackerSamplerCS() |
||||
{ |
||||
|
||||
} |
||||
|
||||
bool TrackerSamplerCS::samplingImpl( const Mat& image, Rect boundingBox, std::vector<Mat>& sample ) |
||||
{ |
||||
|
||||
trackedPatch = boundingBox; |
||||
Size imageSize( image.cols, image.rows ); |
||||
validROI = Rect( 0, 0, imageSize.width, imageSize.height ); |
||||
|
||||
Size trackedPatchSize( trackedPatch.width, trackedPatch.height ); |
||||
Rect trackingROI = getTrackingROI( params.searchFactor ); |
||||
|
||||
sample = patchesRegularScan( image, trackingROI, trackedPatchSize ); |
||||
|
||||
return true; |
||||
} |
||||
|
||||
Rect TrackerSamplerCS::getTrackingROI( float searchFactor ) |
||||
{ |
||||
Rect searchRegion; |
||||
|
||||
searchRegion = RectMultiply( trackedPatch, searchFactor ); |
||||
//check
|
||||
if( searchRegion.y + searchRegion.height > validROI.height ) |
||||
searchRegion.height = validROI.height - searchRegion.y; |
||||
if( searchRegion.x + searchRegion.width > validROI.width ) |
||||
searchRegion.width = validROI.width - searchRegion.x; |
||||
|
||||
return searchRegion; |
||||
} |
||||
|
||||
Rect TrackerSamplerCS::RectMultiply( const Rect & rect, float f ) |
||||
{ |
||||
cv::Rect r_tmp; |
||||
r_tmp.y = (int) ( rect.y - ( (float) rect.height * f - rect.height ) / 2 ); |
||||
if( r_tmp.y < 0 ) |
||||
r_tmp.y = 0; |
||||
r_tmp.x = (int) ( rect.x - ( (float) rect.width * f - rect.width ) / 2 ); |
||||
if( r_tmp.x < 0 ) |
||||
r_tmp.x = 0; |
||||
r_tmp.height = (int) ( rect.height * f ); |
||||
r_tmp.width = (int) ( rect.width * f ); |
||||
|
||||
return r_tmp; |
||||
} |
||||
|
||||
Rect TrackerSamplerCS::getROI() const |
||||
{ |
||||
return ROI; |
||||
} |
||||
|
||||
void TrackerSamplerCS::setCheckedROI( Rect imageROI ) |
||||
{ |
||||
int dCol, dRow; |
||||
dCol = imageROI.x - validROI.x; |
||||
dRow = imageROI.y - validROI.y; |
||||
ROI.y = ( dRow < 0 ) ? validROI.y : imageROI.y; |
||||
ROI.x = ( dCol < 0 ) ? validROI.x : imageROI.x; |
||||
dCol = imageROI.x + imageROI.width - ( validROI.x + validROI.width ); |
||||
dRow = imageROI.y + imageROI.height - ( validROI.y + validROI.height ); |
||||
ROI.height = ( dRow > 0 ) ? validROI.height + validROI.y - ROI.y : imageROI.height + imageROI.y - ROI.y; |
||||
ROI.width = ( dCol > 0 ) ? validROI.width + validROI.x - ROI.x : imageROI.width + imageROI.x - ROI.x; |
||||
} |
||||
|
||||
std::vector<Mat> TrackerSamplerCS::patchesRegularScan( const Mat& image, Rect trackingROI, Size patchSize ) |
||||
{ |
||||
std::vector<Mat> sample; |
||||
if( ( validROI == trackingROI ) ) |
||||
ROI = trackingROI; |
||||
else |
||||
setCheckedROI( trackingROI ); |
||||
|
||||
if( mode == MODE_POSITIVE ) |
||||
{ |
||||
int num = 4; |
||||
sample.resize( num ); |
||||
Mat singleSample = image( trackedPatch ); |
||||
for ( int i = 0; i < num; i++ ) |
||||
sample[i] = singleSample; |
||||
return sample; |
||||
} |
||||
|
||||
int stepCol = (int) floor( ( 1.0f - params.overlap ) * (float) patchSize.width + 0.5f ); |
||||
int stepRow = (int) floor( ( 1.0f - params.overlap ) * (float) patchSize.height + 0.5f ); |
||||
if( stepCol <= 0 ) |
||||
stepCol = 1; |
||||
if( stepRow <= 0 ) |
||||
stepRow = 1; |
||||
|
||||
Size m_patchGrid; |
||||
Rect m_rectUpperLeft; |
||||
Rect m_rectUpperRight; |
||||
Rect m_rectLowerLeft; |
||||
Rect m_rectLowerRight; |
||||
int num; |
||||
|
||||
m_patchGrid.height = ( (int) ( (float) ( ROI.height - patchSize.height ) / stepRow ) + 1 ); |
||||
m_patchGrid.width = ( (int) ( (float) ( ROI.width - patchSize.width ) / stepCol ) + 1 ); |
||||
|
||||
num = m_patchGrid.width * m_patchGrid.height; |
||||
sample.resize( num ); |
||||
int curPatch = 0; |
||||
|
||||
m_rectUpperLeft = m_rectUpperRight = m_rectLowerLeft = m_rectLowerRight = cv::Rect( 0, 0, patchSize.width, patchSize.height ); |
||||
m_rectUpperLeft.y = ROI.y; |
||||
m_rectUpperLeft.x = ROI.x; |
||||
m_rectUpperRight.y = ROI.y; |
||||
m_rectUpperRight.x = ROI.x + ROI.width - patchSize.width; |
||||
m_rectLowerLeft.y = ROI.y + ROI.height - patchSize.height; |
||||
m_rectLowerLeft.x = ROI.x; |
||||
m_rectLowerRight.y = ROI.y + ROI.height - patchSize.height; |
||||
m_rectLowerRight.x = ROI.x + ROI.width - patchSize.width; |
||||
|
||||
if( mode == MODE_NEGATIVE ) |
||||
{ |
||||
int numSamples = 4; |
||||
sample.resize( numSamples ); |
||||
sample[0] = image( m_rectUpperLeft ); |
||||
sample[1] = image( m_rectUpperRight ); |
||||
sample[2] = image( m_rectLowerLeft ); |
||||
sample[3] = image( m_rectLowerRight ); |
||||
return sample; |
||||
} |
||||
|
||||
int numPatchesX; |
||||
int numPatchesY; |
||||
|
||||
numPatchesX = 0; |
||||
numPatchesY = 0; |
||||
for ( int curRow = 0; curRow < ROI.height - patchSize.height + 1; curRow += stepRow ) |
||||
{ |
||||
numPatchesY++; |
||||
|
||||
for ( int curCol = 0; curCol < ROI.width - patchSize.width + 1; curCol += stepCol ) |
||||
{ |
||||
if( curRow == 0 ) |
||||
numPatchesX++; |
||||
|
||||
Mat singleSample = image( Rect( curCol + ROI.x, curRow + ROI.y, patchSize.width, patchSize.height ) ); |
||||
sample[curPatch] = singleSample; |
||||
curPatch++; |
||||
} |
||||
} |
||||
|
||||
CV_Assert( curPatch == num ); |
||||
|
||||
return sample; |
||||
} |
||||
|
||||
} /* namespace cv */ |
@ -0,0 +1,445 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
/*
|
||||
* TrackerStateEstimator |
||||
*/ |
||||
|
||||
TrackerStateEstimator::~TrackerStateEstimator() |
||||
{ |
||||
|
||||
} |
||||
|
||||
Ptr<TrackerTargetState> TrackerStateEstimator::estimate( const std::vector<ConfidenceMap>& confidenceMaps ) |
||||
{ |
||||
if( confidenceMaps.empty() ) |
||||
return Ptr<TrackerTargetState>(); |
||||
|
||||
return estimateImpl( confidenceMaps ); |
||||
|
||||
} |
||||
|
||||
void TrackerStateEstimator::update( std::vector<ConfidenceMap>& confidenceMaps ) |
||||
{ |
||||
if( confidenceMaps.empty() ) |
||||
return; |
||||
|
||||
return updateImpl( confidenceMaps ); |
||||
|
||||
} |
||||
|
||||
Ptr<TrackerStateEstimator> TrackerStateEstimator::create( const String& trackeStateEstimatorType ) |
||||
{ |
||||
|
||||
if( trackeStateEstimatorType.find( "SVM" ) == 0 ) |
||||
{ |
||||
return Ptr<TrackerStateEstimatorSVM>( new TrackerStateEstimatorSVM() ); |
||||
} |
||||
|
||||
if( trackeStateEstimatorType.find( "BOOSTING" ) == 0 ) |
||||
{ |
||||
return Ptr<TrackerStateEstimatorMILBoosting>( new TrackerStateEstimatorMILBoosting() ); |
||||
} |
||||
|
||||
CV_Error( -1, "Tracker state estimator type not supported" ); |
||||
return Ptr<TrackerStateEstimator>(); |
||||
} |
||||
|
||||
String TrackerStateEstimator::getClassName() const |
||||
{ |
||||
return className; |
||||
} |
||||
|
||||
/**
|
||||
* TrackerStateEstimatorMILBoosting::TrackerMILTargetState |
||||
*/ |
||||
TrackerStateEstimatorMILBoosting::TrackerMILTargetState::TrackerMILTargetState( const Point2f& position, int width, int height, bool foreground, |
||||
const Mat& features ) |
||||
{ |
||||
setTargetPosition( position ); |
||||
setTargetWidth( width ); |
||||
setTargetHeight( height ); |
||||
setTargetFg( foreground ); |
||||
setFeatures( features ); |
||||
} |
||||
|
||||
void TrackerStateEstimatorMILBoosting::TrackerMILTargetState::setTargetFg( bool foreground ) |
||||
{ |
||||
isTarget = foreground; |
||||
} |
||||
|
||||
void TrackerStateEstimatorMILBoosting::TrackerMILTargetState::setFeatures( const Mat& features ) |
||||
{ |
||||
targetFeatures = features; |
||||
} |
||||
|
||||
bool TrackerStateEstimatorMILBoosting::TrackerMILTargetState::isTargetFg() const |
||||
{ |
||||
return isTarget; |
||||
} |
||||
|
||||
Mat TrackerStateEstimatorMILBoosting::TrackerMILTargetState::getFeatures() const |
||||
{ |
||||
return targetFeatures; |
||||
} |
||||
|
||||
TrackerStateEstimatorMILBoosting::TrackerStateEstimatorMILBoosting( int nFeatures ) |
||||
{ |
||||
className = "BOOSTING"; |
||||
trained = false; |
||||
numFeatures = nFeatures; |
||||
} |
||||
|
||||
TrackerStateEstimatorMILBoosting::~TrackerStateEstimatorMILBoosting() |
||||
{ |
||||
|
||||
} |
||||
|
||||
void TrackerStateEstimatorMILBoosting::setCurrentConfidenceMap( ConfidenceMap& confidenceMap ) |
||||
{ |
||||
currentConfidenceMap.clear(); |
||||
currentConfidenceMap = confidenceMap; |
||||
} |
||||
|
||||
uint TrackerStateEstimatorMILBoosting::max_idx( const std::vector<float> &v ) |
||||
{ |
||||
const float* findPtr = & ( *std::max_element( v.begin(), v.end() ) ); |
||||
const float* beginPtr = & ( *v.begin() ); |
||||
return (uint) ( findPtr - beginPtr ); |
||||
} |
||||
|
||||
Ptr<TrackerTargetState> TrackerStateEstimatorMILBoosting::estimateImpl( const std::vector<ConfidenceMap>& /*confidenceMaps*/) |
||||
{ |
||||
//run ClfMilBoost classify in order to compute next location
|
||||
if( currentConfidenceMap.empty() ) |
||||
return Ptr<TrackerTargetState>(); |
||||
|
||||
Mat positiveStates; |
||||
Mat negativeStates; |
||||
|
||||
prepareData( currentConfidenceMap, positiveStates, negativeStates ); |
||||
|
||||
std::vector<float> prob = boostMILModel.classify( positiveStates ); |
||||
|
||||
int bestind = max_idx( prob ); |
||||
//float resp = prob[bestind];
|
||||
|
||||
return currentConfidenceMap.at( bestind ).first; |
||||
} |
||||
|
||||
void TrackerStateEstimatorMILBoosting::prepareData( const ConfidenceMap& confidenceMap, Mat& positive, Mat& negative ) |
||||
{ |
||||
|
||||
int posCounter = 0; |
||||
int negCounter = 0; |
||||
|
||||
for ( size_t i = 0; i < confidenceMap.size(); i++ ) |
||||
{ |
||||
Ptr<TrackerMILTargetState> currentTargetState = confidenceMap.at( i ).first.staticCast<TrackerMILTargetState>(); |
||||
if( currentTargetState->isTargetFg() ) |
||||
posCounter++; |
||||
else |
||||
negCounter++; |
||||
} |
||||
|
||||
positive.create( posCounter, numFeatures, CV_32FC1 ); |
||||
negative.create( negCounter, numFeatures, CV_32FC1 ); |
||||
|
||||
//TODO change with mat fast access
|
||||
//initialize trainData (positive and negative)
|
||||
|
||||
int pc = 0; |
||||
int nc = 0; |
||||
for ( size_t i = 0; i < confidenceMap.size(); i++ ) |
||||
{ |
||||
Ptr<TrackerMILTargetState> currentTargetState = confidenceMap.at( i ).first.staticCast<TrackerMILTargetState>(); |
||||
Mat stateFeatures = currentTargetState->getFeatures(); |
||||
|
||||
if( currentTargetState->isTargetFg() ) |
||||
{ |
||||
for ( int j = 0; j < stateFeatures.rows; j++ ) |
||||
{ |
||||
//fill the positive trainData with the value of the feature j for sample i
|
||||
positive.at<float>( pc, j ) = stateFeatures.at<float>( j, 0 ); |
||||
} |
||||
pc++; |
||||
} |
||||
else |
||||
{ |
||||
for ( int j = 0; j < stateFeatures.rows; j++ ) |
||||
{ |
||||
//fill the negative trainData with the value of the feature j for sample i
|
||||
negative.at<float>( nc, j ) = stateFeatures.at<float>( j, 0 ); |
||||
} |
||||
nc++; |
||||
} |
||||
|
||||
} |
||||
} |
||||
|
||||
void TrackerStateEstimatorMILBoosting::updateImpl( std::vector<ConfidenceMap>& confidenceMaps ) |
||||
{ |
||||
|
||||
if( !trained ) |
||||
{ |
||||
//this is the first time that the classifier is built
|
||||
//init MIL
|
||||
boostMILModel.init(); |
||||
trained = true; |
||||
} |
||||
|
||||
ConfidenceMap lastConfidenceMap = confidenceMaps.back(); |
||||
Mat positiveStates; |
||||
Mat negativeStates; |
||||
|
||||
prepareData( lastConfidenceMap, positiveStates, negativeStates ); |
||||
//update MIL
|
||||
boostMILModel.update( positiveStates, negativeStates ); |
||||
|
||||
} |
||||
|
||||
/**
|
||||
* TrackerStateEstimatorAdaBoosting |
||||
*/ |
||||
TrackerStateEstimatorAdaBoosting::TrackerStateEstimatorAdaBoosting( int numClassifer, int initIterations, int nFeatures, Size patchSize, const Rect& ROI ) |
||||
{ |
||||
className = "ADABOOSTING"; |
||||
numBaseClassifier = numClassifer; |
||||
numFeatures = nFeatures; |
||||
iterationInit = initIterations; |
||||
initPatchSize = patchSize; |
||||
trained = false; |
||||
sampleROI = ROI; |
||||
|
||||
} |
||||
|
||||
Rect TrackerStateEstimatorAdaBoosting::getSampleROI() const |
||||
{ |
||||
return sampleROI; |
||||
} |
||||
|
||||
void TrackerStateEstimatorAdaBoosting::setSampleROI( const Rect& ROI ) |
||||
{ |
||||
sampleROI = ROI; |
||||
} |
||||
|
||||
/**
|
||||
* TrackerAdaBoostingTargetState::TrackerAdaBoostingTargetState |
||||
*/ |
||||
TrackerStateEstimatorAdaBoosting::TrackerAdaBoostingTargetState::TrackerAdaBoostingTargetState( const Point2f& position, int width, int height, |
||||
bool foreground, const Mat& responses ) |
||||
{ |
||||
setTargetPosition( position ); |
||||
setTargetWidth( width ); |
||||
setTargetHeight( height ); |
||||
|
||||
setTargetFg( foreground ); |
||||
setTargetResponses( responses ); |
||||
} |
||||
|
||||
void TrackerStateEstimatorAdaBoosting::TrackerAdaBoostingTargetState::setTargetFg( bool foreground ) |
||||
{ |
||||
isTarget = foreground; |
||||
} |
||||
|
||||
bool TrackerStateEstimatorAdaBoosting::TrackerAdaBoostingTargetState::isTargetFg() const |
||||
{ |
||||
return isTarget; |
||||
} |
||||
|
||||
void TrackerStateEstimatorAdaBoosting::TrackerAdaBoostingTargetState::setTargetResponses( const Mat& responses ) |
||||
{ |
||||
targetResponses = responses; |
||||
} |
||||
|
||||
Mat TrackerStateEstimatorAdaBoosting::TrackerAdaBoostingTargetState::getTargetResponses() const |
||||
{ |
||||
return targetResponses; |
||||
} |
||||
|
||||
TrackerStateEstimatorAdaBoosting::~TrackerStateEstimatorAdaBoosting() |
||||
{ |
||||
|
||||
} |
||||
void TrackerStateEstimatorAdaBoosting::setCurrentConfidenceMap( ConfidenceMap& confidenceMap ) |
||||
{ |
||||
currentConfidenceMap.clear(); |
||||
currentConfidenceMap = confidenceMap; |
||||
} |
||||
|
||||
std::vector<int> TrackerStateEstimatorAdaBoosting::computeReplacedClassifier() |
||||
{ |
||||
return replacedClassifier; |
||||
} |
||||
|
||||
std::vector<int> TrackerStateEstimatorAdaBoosting::computeSwappedClassifier() |
||||
{ |
||||
return swappedClassifier; |
||||
} |
||||
|
||||
std::vector<int> TrackerStateEstimatorAdaBoosting::computeSelectedWeakClassifier() |
||||
{ |
||||
return boostClassifier->getSelectedWeakClassifier(); |
||||
} |
||||
|
||||
Ptr<TrackerTargetState> TrackerStateEstimatorAdaBoosting::estimateImpl( const std::vector<ConfidenceMap>& /*confidenceMaps*/ ) |
||||
{ |
||||
//run classify in order to compute next location
|
||||
if( currentConfidenceMap.empty() ) |
||||
return Ptr<TrackerTargetState>(); |
||||
|
||||
std::vector<Mat> images; |
||||
|
||||
for ( size_t i = 0; i < currentConfidenceMap.size(); i++ ) |
||||
{ |
||||
Ptr<TrackerAdaBoostingTargetState> currentTargetState = currentConfidenceMap.at( i ).first.staticCast<TrackerAdaBoostingTargetState>(); |
||||
images.push_back( currentTargetState->getTargetResponses() ); |
||||
} |
||||
|
||||
int bestIndex; |
||||
boostClassifier->classifySmooth( images, sampleROI, bestIndex ); |
||||
|
||||
// get bestIndex from classifySmooth
|
||||
return currentConfidenceMap.at( bestIndex ).first; |
||||
|
||||
} |
||||
|
||||
void TrackerStateEstimatorAdaBoosting::updateImpl( std::vector<ConfidenceMap>& confidenceMaps ) |
||||
{ |
||||
if( !trained ) |
||||
{ |
||||
//this is the first time that the classifier is built
|
||||
int numWeakClassifier = numBaseClassifier * 10; |
||||
|
||||
bool useFeatureExchange = true; |
||||
boostClassifier = Ptr<StrongClassifierDirectSelection>( |
||||
new StrongClassifierDirectSelection( numBaseClassifier, numWeakClassifier, initPatchSize, sampleROI, useFeatureExchange, iterationInit ) ); |
||||
//init base classifiers
|
||||
boostClassifier->initBaseClassifier(); |
||||
|
||||
trained = true; |
||||
} |
||||
|
||||
ConfidenceMap lastConfidenceMap = confidenceMaps.back(); |
||||
bool featureEx = boostClassifier->getUseFeatureExchange(); |
||||
|
||||
replacedClassifier.clear(); |
||||
replacedClassifier.resize( lastConfidenceMap.size(), -1 ); |
||||
swappedClassifier.clear(); |
||||
swappedClassifier.resize( lastConfidenceMap.size(), -1 ); |
||||
|
||||
for ( size_t i = 0; i < lastConfidenceMap.size() / 2; i++ ) |
||||
{ |
||||
Ptr<TrackerAdaBoostingTargetState> currentTargetState = lastConfidenceMap.at( i ).first.staticCast<TrackerAdaBoostingTargetState>(); |
||||
|
||||
int currentFg = 1; |
||||
if( !currentTargetState->isTargetFg() ) |
||||
currentFg = -1; |
||||
Mat res = currentTargetState->getTargetResponses(); |
||||
|
||||
boostClassifier->update( res, currentFg ); |
||||
if( featureEx ) |
||||
{ |
||||
replacedClassifier[i] = boostClassifier->getReplacedClassifier(); |
||||
swappedClassifier[i] = boostClassifier->getSwappedClassifier(); |
||||
if( replacedClassifier[i] >= 0 && swappedClassifier[i] >= 0 ) |
||||
boostClassifier->replaceWeakClassifier( replacedClassifier[i] ); |
||||
} |
||||
else |
||||
{ |
||||
replacedClassifier[i] = -1; |
||||
swappedClassifier[i] = -1; |
||||
} |
||||
|
||||
int mapPosition = i + lastConfidenceMap.size() / 2; |
||||
Ptr<TrackerAdaBoostingTargetState> currentTargetState2 = lastConfidenceMap.at( mapPosition ).first.staticCast<TrackerAdaBoostingTargetState>(); |
||||
|
||||
currentFg = 1; |
||||
if( !currentTargetState2->isTargetFg() ) |
||||
currentFg = -1; |
||||
const Mat res2 = currentTargetState2->getTargetResponses(); |
||||
|
||||
boostClassifier->update( res2, currentFg ); |
||||
if( featureEx ) |
||||
{ |
||||
replacedClassifier[mapPosition] = boostClassifier->getReplacedClassifier(); |
||||
swappedClassifier[mapPosition] = boostClassifier->getSwappedClassifier(); |
||||
if( replacedClassifier[mapPosition] >= 0 && swappedClassifier[mapPosition] >= 0 ) |
||||
boostClassifier->replaceWeakClassifier( replacedClassifier[mapPosition] ); |
||||
} |
||||
else |
||||
{ |
||||
replacedClassifier[mapPosition] = -1; |
||||
swappedClassifier[mapPosition] = -1; |
||||
} |
||||
} |
||||
|
||||
} |
||||
|
||||
/**
|
||||
* TrackerStateEstimatorSVM |
||||
*/ |
||||
TrackerStateEstimatorSVM::TrackerStateEstimatorSVM() |
||||
{ |
||||
className = "SVM"; |
||||
} |
||||
|
||||
TrackerStateEstimatorSVM::~TrackerStateEstimatorSVM() |
||||
{ |
||||
|
||||
} |
||||
|
||||
Ptr<TrackerTargetState> TrackerStateEstimatorSVM::estimateImpl( const std::vector<ConfidenceMap>& confidenceMaps ) |
||||
{ |
||||
return confidenceMaps.back().back().first; |
||||
} |
||||
|
||||
void TrackerStateEstimatorSVM::updateImpl( std::vector<ConfidenceMap>& /*confidenceMaps*/) |
||||
{ |
||||
|
||||
} |
||||
|
||||
} /* namespace cv */ |
@ -0,0 +1,61 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
#include "opencv2/tracking.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
CV_INIT_ALGORITHM(TrackerMIL, "TRACKER.MIL",); |
||||
|
||||
CV_INIT_ALGORITHM(TrackerBoosting, "TRACKER.BOOSTING",); |
||||
|
||||
bool initModule_tracking(void) |
||||
{ |
||||
bool all = true; |
||||
all &= !TrackerMIL_info_auto.name().empty(); |
||||
all &= !TrackerBoosting_info_auto.name().empty(); |
||||
|
||||
return all; |
||||
} |
||||
|
||||
} |
@ -0,0 +1,3 @@ |
||||
#include "test_precomp.hpp" |
||||
|
||||
CV_TEST_MAIN("cv") |
@ -0,0 +1,18 @@ |
||||
#ifdef __GNUC__ |
||||
# pragma GCC diagnostic ignored "-Wmissing-declarations" |
||||
# if defined __clang__ || defined __APPLE__ |
||||
# pragma GCC diagnostic ignored "-Wmissing-prototypes" |
||||
# pragma GCC diagnostic ignored "-Wextra" |
||||
# endif |
||||
#endif |
||||
|
||||
#ifndef __OPENCV_TEST_PRECOMP_HPP__ |
||||
#define __OPENCV_TEST_PRECOMP_HPP__ |
||||
|
||||
#include <iostream> |
||||
#include "opencv2/ts.hpp" |
||||
#include "opencv2/imgproc.hpp" |
||||
#include "opencv2/tracking.hpp" |
||||
#include "opencv2/highgui.hpp" |
||||
|
||||
#endif |
@ -0,0 +1,130 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
#include "opencv2/tracking.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
class CV_TrackerBaseTest : public cvtest::BaseTest |
||||
{ |
||||
public: |
||||
CV_TrackerBaseTest(); |
||||
virtual ~CV_TrackerBaseTest(); |
||||
|
||||
}; |
||||
|
||||
CV_TrackerBaseTest::CV_TrackerBaseTest() |
||||
{ |
||||
|
||||
} |
||||
|
||||
CV_TrackerBaseTest::~CV_TrackerBaseTest() |
||||
{ |
||||
|
||||
} |
||||
|
||||
/************************************ TrackerMIL ************************************/ |
||||
|
||||
class CV_TrackerMILTest : public CV_TrackerBaseTest |
||||
{ |
||||
public: |
||||
CV_TrackerMILTest(); |
||||
~CV_TrackerMILTest(); |
||||
|
||||
protected: |
||||
void run( int ); |
||||
}; |
||||
|
||||
CV_TrackerMILTest::CV_TrackerMILTest() |
||||
{ |
||||
} |
||||
|
||||
CV_TrackerMILTest::~CV_TrackerMILTest() |
||||
{ |
||||
} |
||||
|
||||
void CV_TrackerMILTest::run( int ) |
||||
{ |
||||
ts->set_failed_test_info( cvtest::TS::FAIL_GENERIC ); |
||||
ts->printf( cvtest::TS::LOG, "CV_TrackerMILTest to be implemented" ); |
||||
} |
||||
|
||||
TEST(DISABLED_Tracking_TrackerMIL, accuracy) |
||||
{ |
||||
CV_TrackerMILTest test; |
||||
test.safe_run(); |
||||
} |
||||
|
||||
/************************************ TrackerBoosting ************************************/ |
||||
|
||||
class CV_TrackerBoostingTest : public CV_TrackerBaseTest |
||||
{ |
||||
public: |
||||
CV_TrackerBoostingTest(); |
||||
~CV_TrackerBoostingTest(); |
||||
|
||||
protected: |
||||
void run( int ); |
||||
}; |
||||
|
||||
CV_TrackerBoostingTest::CV_TrackerBoostingTest() |
||||
{ |
||||
} |
||||
|
||||
CV_TrackerBoostingTest::~CV_TrackerBoostingTest() |
||||
{ |
||||
} |
||||
|
||||
void CV_TrackerBoostingTest::run( int ) |
||||
{ |
||||
ts->set_failed_test_info( cvtest::TS::FAIL_GENERIC ); |
||||
ts->printf( cvtest::TS::LOG, "CV_TrackerBoostingTest to be implemented" ); |
||||
} |
||||
|
||||
TEST(DISABLED_Tracking_TrackerBoosting, accuracy) |
||||
{ |
||||
CV_TrackerBoostingTest test; |
||||
test.safe_run(); |
||||
} |
||||
|
||||
/* End of file. */ |
Loading…
Reference in new issue