I have put all the modules in the stereo namespace

changed the ptr<StereBinaryBM> to ptr<cv::stereo::StereoBinaryBM>

modified the documentation

modified documentation for the stereo_c

documentation

doc

fixed two issues

modfified the precomp.hpp header by explicitly adding the cvdef header from core

modified comments for documentation for stereo and removed some headers

added a header and modified some function definition

test

test 2

changed exports_w to exports

removed the correct matches module
pull/251/head
Muresan Mircea Paul 10 years ago
parent 0d1fd8de50
commit 9b55c04e75
  1. 420
      modules/stereo/include/opencv2/stereo.hpp
  2. 1
      modules/stereo/include/opencv2/stereo/stereo.hpp
  3. 16
      modules/stereo/include/opencv2/stereo/stereo_c.h
  4. 11
      modules/stereo/src/compat_binary_stereo.cpp
  5. 3
      modules/stereo/src/precomp.hpp
  6. 1069
      modules/stereo/src/stereo_binary_bm.cpp
  7. 2239
      modules/stereo/src/stereo_binary_sgbm.cpp
  8. 15
      modules/stereo/test/test_precomp.hpp

@ -47,218 +47,232 @@
#include "opencv2/core.hpp" #include "opencv2/core.hpp"
#include "opencv2/features2d.hpp" #include "opencv2/features2d.hpp"
#include "opencv2/core/affine.hpp" #include "opencv2/core/affine.hpp"
#include "opencv2/core/cvdef.h"
namespace cv
{
CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2,
OutputArray newPoints1, OutputArray newPoints2 );
/** @brief Filters off small noise blobs (speckles) in the disparity map
@param img The input 16-bit signed disparity image
@param newVal The disparity value used to paint-off the speckles
@param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not
affected by the algorithm
@param maxDiff Maximum difference between neighbor disparity pixels to put them into the same
blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
account when specifying this parameter value.
@param buf The optional temporary buffer to avoid memory allocation within the function.
*/
CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal,
int maxSpeckleSize, double maxDiff,
InputOutputArray buf = noArray() );
//! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify()) /**
CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2, @defgroup stereo Stereo Correspondance Algorithms
int minDisparity, int numberOfDisparities,
int SADWindowSize );
//! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost,
int minDisparity, int numberOfDisparities,
int disp12MaxDisp = 1 );
/** @brief The base class for stereo correspondence algorithms.
*/ */
class CV_EXPORTS_W StereoMatcher : public Algorithm
{
public:
enum { DISP_SHIFT = 4,
DISP_SCALE = (1 << DISP_SHIFT)
};
/** @brief Computes disparity map for the specified stereo pair
@param left Left 8-bit single-channel image.
@param right Right image of the same size and the same type as the left one.
@param disparity Output disparity map. It has the same size as the input images. Some algorithms,
like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
*/
CV_WRAP virtual void compute( InputArray left, InputArray right,
OutputArray disparity ) = 0;
CV_WRAP virtual int getMinDisparity() const = 0;
CV_WRAP virtual void setMinDisparity(int minDisparity) = 0;
CV_WRAP virtual int getNumDisparities() const = 0;
CV_WRAP virtual void setNumDisparities(int numDisparities) = 0;
CV_WRAP virtual int getBlockSize() const = 0;
CV_WRAP virtual void setBlockSize(int blockSize) = 0;
CV_WRAP virtual int getSpeckleWindowSize() const = 0; namespace cv
CV_WRAP virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;
CV_WRAP virtual int getSpeckleRange() const = 0;
CV_WRAP virtual void setSpeckleRange(int speckleRange) = 0;
CV_WRAP virtual int getDisp12MaxDiff() const = 0;
CV_WRAP virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
};
/** @brief Class for computing stereo correspondence using the block matching algorithm, introduced and
contributed to OpenCV by K. Konolige.
*/
class CV_EXPORTS_W StereoBinaryBM : public StereoMatcher
{
public:
enum { PREFILTER_NORMALIZED_RESPONSE = 0,
PREFILTER_XSOBEL = 1
};
CV_WRAP virtual int getPreFilterType() const = 0;
CV_WRAP virtual void setPreFilterType(int preFilterType) = 0;
CV_WRAP virtual int getPreFilterSize() const = 0;
CV_WRAP virtual void setPreFilterSize(int preFilterSize) = 0;
CV_WRAP virtual int getPreFilterCap() const = 0;
CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
CV_WRAP virtual int getTextureThreshold() const = 0;
CV_WRAP virtual void setTextureThreshold(int textureThreshold) = 0;
CV_WRAP virtual int getUniquenessRatio() const = 0;
CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
CV_WRAP virtual int getSmallerBlockSize() const = 0;
CV_WRAP virtual void setSmallerBlockSize(int blockSize) = 0;
CV_WRAP virtual Rect getROI1() const = 0;
CV_WRAP virtual void setROI1(Rect roi1) = 0;
CV_WRAP virtual Rect getROI2() const = 0;
CV_WRAP virtual void setROI2(Rect roi2) = 0;
/** @brief Creates StereoBM object
@param numDisparities the disparity search range. For each pixel algorithm will find the best
disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
shifted by changing the minimum disparity.
@param blockSize the linear size of the blocks compared by the algorithm. The size should be odd
(as the block is centered at the current pixel). Larger block size implies smoother, though less
accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
chance for algorithm to find a wrong correspondence.
The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
a specific stereo pair.
*/
CV_WRAP static Ptr<StereoBinaryBM> create(int numDisparities = 0, int blockSize = 21);
};
/** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original
one as follows:
- By default, the algorithm is single-pass, which means that you consider only 5 directions
instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
algorithm but beware that it may consume a lot of memory.
- The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
blocks to single pixels.
- Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well.
- Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
check, quadratic interpolation and speckle filtering).
@note
- (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
at opencv_source_code/samples/python2/stereo_match.py
*/
class CV_EXPORTS_W StereoBinarySGBM : public StereoMatcher
{ {
public: namespace stereo
enum {
{
MODE_SGBM = 0, //! @addtogroup stereo
MODE_HH = 1 //! @{
}; // void correctMatches( InputArray F, InputArray points1, InputArray points2,
// OutputArray newPoints1, OutputArray newPoints2 );
CV_WRAP virtual int getPreFilterCap() const = 0;
CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0; /** @brief Filters off small noise blobs (speckles) in the disparity map
CV_WRAP virtual int getUniquenessRatio() const = 0; @param img The input 16-bit signed disparity image
CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0; @param newVal The disparity value used to paint-off the speckles
@param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not
CV_WRAP virtual int getP1() const = 0; affected by the algorithm
CV_WRAP virtual void setP1(int P1) = 0; @param maxDiff Maximum difference between neighbor disparity pixels to put them into the same
blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
CV_WRAP virtual int getP2() const = 0; disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
CV_WRAP virtual void setP2(int P2) = 0; account when specifying this parameter value.
@param buf The optional temporary buffer to avoid memory allocation within the function.
CV_WRAP virtual int getMode() const = 0; */
CV_WRAP virtual void setMode(int mode) = 0; void filterSpeckles( InputOutputArray img, double newVal,
int maxSpeckleSize, double maxDiff,
/** @brief Creates StereoSGBM object InputOutputArray buf = noArray() );
@param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes //! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify())
rectification algorithms can shift images, so this parameter needs to be adjusted accordingly. Rect getValidDisparityROI( Rect roi1, Rect roi2,
@param numDisparities Maximum disparity minus minimum disparity. The value is always greater than int minDisparity, int numberOfDisparities,
zero. In the current implementation, this parameter must be divisible by 16. int SADWindowSize );
@param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be
somewhere in the 3..11 range. //! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
@param P1 The first parameter controlling the disparity smoothness. See below. void validateDisparity( InputOutputArray disparity, InputArray cost,
@param P2 The second parameter controlling the disparity smoothness. The larger the values are, int minDisparity, int numberOfDisparities,
the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1 int disp12MaxDisp = 1 );
between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good /** @brief The base class for stereo correspondence algorithms.
P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and */
32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively). class StereoMatcher : public Algorithm
@param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right {
disparity check. Set it to a non-positive value to disable the check. public:
@param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first enum { DISP_SHIFT = 4,
computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval. DISP_SCALE = (1 << DISP_SHIFT)
The result values are passed to the Birchfield-Tomasi pixel cost function. };
@param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function
value should "win" the second best value to consider the found match correct. Normally, a value /** @brief Computes disparity map for the specified stereo pair
within the 5-15 range is good enough.
@param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles @param left Left 8-bit single-channel image.
and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the @param right Right image of the same size and the same type as the left one.
50-200 range. @param disparity Output disparity map. It has the same size as the input images. Some algorithms,
@param speckleRange Maximum disparity variation within each connected component. If you do speckle like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
filtering, set the parameter to a positive value, it will be implicitly multiplied by 16. has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
Normally, 1 or 2 is good enough. */
@param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming virtual void compute( InputArray left, InputArray right,
algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and OutputArray disparity ) = 0;
huge for HD-size pictures. By default, it is set to false .
virtual int getMinDisparity() const = 0;
The first constructor initializes StereoSGBM with all the default parameters. So, you only have to virtual void setMinDisparity(int minDisparity) = 0;
set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
to a custom value. virtual int getNumDisparities() const = 0;
*/ virtual void setNumDisparities(int numDisparities) = 0;
CV_WRAP static Ptr<StereoBinarySGBM> create(int minDisparity, int numDisparities, int blockSize,
int P1 = 0, int P2 = 0, int disp12MaxDiff = 0, virtual int getBlockSize() const = 0;
int preFilterCap = 0, int uniquenessRatio = 0, virtual void setBlockSize(int blockSize) = 0;
int speckleWindowSize = 0, int speckleRange = 0,
int mode = StereoBinarySGBM::MODE_SGBM); virtual int getSpeckleWindowSize() const = 0;
}; virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;
virtual int getSpeckleRange() const = 0;
virtual void setSpeckleRange(int speckleRange) = 0;
virtual int getDisp12MaxDiff() const = 0;
virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
};
/** @brief Class for computing stereo correspondence using the block matching algorithm, introduced and
contributed to OpenCV by K. Konolige.
*/
class StereoBinaryBM : public StereoMatcher
{
public:
enum { PREFILTER_NORMALIZED_RESPONSE = 0,
PREFILTER_XSOBEL = 1
};
virtual int getPreFilterType() const = 0;
virtual void setPreFilterType(int preFilterType) = 0;
virtual int getPreFilterSize() const = 0;
virtual void setPreFilterSize(int preFilterSize) = 0;
virtual int getPreFilterCap() const = 0;
virtual void setPreFilterCap(int preFilterCap) = 0;
virtual int getTextureThreshold() const = 0;
virtual void setTextureThreshold(int textureThreshold) = 0;
virtual int getUniquenessRatio() const = 0;
virtual void setUniquenessRatio(int uniquenessRatio) = 0;
virtual int getSmallerBlockSize() const = 0;
virtual void setSmallerBlockSize(int blockSize) = 0;
virtual Rect getROI1() const = 0;
virtual void setROI1(Rect roi1) = 0;
virtual Rect getROI2() const = 0;
virtual void setROI2(Rect roi2) = 0;
/** @brief Creates StereoBM object
@param numDisparities the disparity search range. For each pixel algorithm will find the best
disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
shifted by changing the minimum disparity.
@param blockSize the linear size of the blocks compared by the algorithm. The size should be odd
(as the block is centered at the current pixel). Larger block size implies smoother, though less
accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
chance for algorithm to find a wrong correspondence.
The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
a specific stereo pair.
*/
CV_EXPORTS static Ptr< cv::stereo::StereoBinaryBM > create(int numDisparities = 0, int blockSize = 21);
};
/** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original
one as follows:
- By default, the algorithm is single-pass, which means that you consider only 5 directions
instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
algorithm but beware that it may consume a lot of memory.
- The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
blocks to single pixels.
- Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well.
- Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
check, quadratic interpolation and speckle filtering).
@note
- (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
at opencv_source_code/samples/python2/stereo_match.py
*/
class StereoBinarySGBM : public StereoMatcher
{
public:
enum
{
MODE_SGBM = 0,
MODE_HH = 1
};
virtual int getPreFilterCap() const = 0;
virtual void setPreFilterCap(int preFilterCap) = 0;
virtual int getUniquenessRatio() const = 0;
virtual void setUniquenessRatio(int uniquenessRatio) = 0;
virtual int getP1() const = 0;
virtual void setP1(int P1) = 0;
virtual int getP2() const = 0;
virtual void setP2(int P2) = 0;
virtual int getMode() const = 0;
virtual void setMode(int mode) = 0;
/** @brief Creates StereoSGBM object
@param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes
rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
@param numDisparities Maximum disparity minus minimum disparity. The value is always greater than
zero. In the current implementation, this parameter must be divisible by 16.
@param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be
somewhere in the 3..11 range.
@param P1 The first parameter controlling the disparity smoothness. See below.
@param P2 The second parameter controlling the disparity smoothness. The larger the values are,
the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and
32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively).
@param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right
disparity check. Set it to a non-positive value to disable the check.
@param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first
computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
The result values are passed to the Birchfield-Tomasi pixel cost function.
@param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function
value should "win" the second best value to consider the found match correct. Normally, a value
within the 5-15 range is good enough.
@param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles
and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
50-200 range.
@param speckleRange Maximum disparity variation within each connected component. If you do speckle
filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
Normally, 1 or 2 is good enough.
@param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
huge for HD-size pictures. By default, it is set to false .
The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
to a custom value.
*/
CV_EXPORTS static Ptr<cv::stereo::StereoBinarySGBM> create(int minDisparity, int numDisparities, int blockSize,
int P1 = 0, int P2 = 0, int disp12MaxDiff = 0,
int preFilterCap = 0, int uniquenessRatio = 0,
int speckleWindowSize = 0, int speckleRange = 0,
int mode = StereoBinarySGBM::MODE_SGBM);
};
//! @}
}//sterep
} // cv } // cv
#ifndef DISABLE_OPENCV_24_COMPATIBILITY #ifndef DISABLE_OPENCV_24_COMPATIBILITY
#include "opencv2/calib3d/calib3d_c.h" #include "opencv2/stereo/stereo_c.h"
#endif #endif
#endif #endif

@ -46,3 +46,4 @@
#endif #endif
#include "opencv2/stereo.hpp" #include "opencv2/stereo.hpp"

@ -52,17 +52,14 @@ extern "C" {
/** @addtogroup stereo_c /** @addtogroup stereo_c
@{ @{
*/ **/
/****************************************************************************************\ //! stereo correspondence parameters and functions
* Stereo *
\****************************************************************************************/
/* stereo correspondence parameters and functions */
#define CV_STEREO_BM_NORMALIZED_RESPONSE 0 #define CV_STEREO_BM_NORMALIZED_RESPONSE 0
#define CV_STEREO_BM_XSOBEL 1 #define CV_STEREO_BM_XSOBEL 1
/* Block matching algorithm structure */ //! Block matching algorithm structure
typedef struct CvStereoBinaryBMState typedef struct CvStereoBinaryBMState
{ {
// pre-filtering (normalization of input images) // pre-filtering (normalization of input images)
@ -109,14 +106,15 @@ CVAPI(void) cvReleaseStereoBinaryBMState( CvStereoBinaryBMState** state );
CVAPI(void) cvFindStereoCorrespondenceBinaryBM( const CvArr* left, const CvArr* right, CVAPI(void) cvFindStereoCorrespondenceBinaryBM( const CvArr* left, const CvArr* right,
CvArr* disparity, CvStereoBinaryBMState* state ); CvArr* disparity, CvStereoBinaryBMState* state );
CVAPI(CvRect) cvGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity, CVAPI(CvRect) cvStereoBinaryGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity,
int numberOfDisparities, int SADWindowSize ); int numberOfDisparities, int SADWindowSize );
CVAPI(void) cvValidateDisparity( CvArr* disparity, const CvArr* cost, CVAPI(void) cvStereoBinaryValidateDisparity( CvArr* disparity, const CvArr* cost,
int minDisparity, int numberOfDisparities, int minDisparity, int numberOfDisparities,
int disp12MaxDiff CV_DEFAULT(1) ); int disp12MaxDiff CV_DEFAULT(1) );
/** @} stereo_c */
#ifdef __cplusplus #ifdef __cplusplus
} // extern "C" } // extern "C"
#endif #endif
#endif /* __OPENCV_STEREO_C_H__ */ #endif /* __OPENCV_STEREO_C_H__ */

@ -92,7 +92,7 @@ void cvFindStereoCorrespondenceBinaryBM( const CvArr* leftarr, const CvArr* righ
CV_Assert( state != 0 ); CV_Assert( state != 0 );
cv::Ptr<cv::StereoBinaryBM> sm = cv::StereoBinaryBM::create(state->numberOfDisparities, cv::Ptr<cv::stereo::StereoBinaryBM> sm = cv::stereo::StereoBinaryBM::create(state->numberOfDisparities,
state->SADWindowSize); state->SADWindowSize);
sm->setPreFilterType(state->preFilterType); sm->setPreFilterType(state->preFilterType);
sm->setPreFilterSize(state->preFilterSize); sm->setPreFilterSize(state->preFilterSize);
@ -108,17 +108,18 @@ void cvFindStereoCorrespondenceBinaryBM( const CvArr* leftarr, const CvArr* righ
sm->compute(left, right, disp); sm->compute(left, right, disp);
} }
CvRect cvGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity, CvRect cvStereoBinaryGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity,
int numberOfDisparities, int SADWindowSize ) int numberOfDisparities, int SADWindowSize )
{ {
return (CvRect)cv::getValidDisparityROI( roi1, roi2, minDisparity, return (CvRect)cv::stereo::getValidDisparityROI( roi1, roi2, minDisparity,
numberOfDisparities, SADWindowSize ); numberOfDisparities, SADWindowSize );
} }
void cvValidateDisparity( CvArr* _disp, const CvArr* _cost, int minDisparity, void cvStereoBinaryValidateDisparity( CvArr* _disp, const CvArr* _cost, int minDisparity,
int numberOfDisparities, int disp12MaxDiff ) int numberOfDisparities, int disp12MaxDiff )
{ {
cv::Mat disp = cv::cvarrToMat(_disp), cost = cv::cvarrToMat(_cost); cv::Mat disp = cv::cvarrToMat(_disp), cost = cv::cvarrToMat(_cost);
cv::validateDisparity( disp, cost, minDisparity, numberOfDisparities, disp12MaxDiff ); cv::stereo::validateDisparity( disp, cost, minDisparity, numberOfDisparities, disp12MaxDiff );
} }

@ -45,9 +45,10 @@
#include "opencv2/stereo.hpp" #include "opencv2/stereo.hpp"
#include "opencv2/imgproc.hpp" #include "opencv2/imgproc.hpp"
#include "opencv2/features2d.hpp" #include "opencv2/features2d.hpp"
#include "opencv2/core.hpp"
#include "opencv2/core/utility.hpp" #include "opencv2/core/utility.hpp"
#include "opencv2/core/private.hpp" #include "opencv2/core/private.hpp"
#include "opencv2/core.hpp" #include "opencv2/core/cvdef.h"
#include "opencv2/highgui.hpp" #include "opencv2/highgui.hpp"
#include <algorithm> #include <algorithm>

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -11,10 +11,21 @@
#include <iostream> #include <iostream>
#include "opencv2/ts.hpp" #include "opencv2/ts.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/stereo.hpp"
#include "opencv2/imgcodecs.hpp" #include "opencv2/imgcodecs.hpp"
#include "opencv2/stereo.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/private.hpp"
#include "opencv2/core/cvdef.h"
#include "opencv2/core.hpp" #include "opencv2/core.hpp"
#include "opencv2/highgui.hpp" #include "opencv2/highgui.hpp"
#include <algorithm>
#include <cmath>
#endif #endif

Loading…
Cancel
Save