Refactored ConvolutionLayer, added Deconvolution.

pull/265/head
Vitaliy Lyudvichenko 10 years ago
parent 527fa656a5
commit 9b1e28ec17
  1. 203
      modules/dnn/src/layers/convolution_layer.cpp
  2. 74
      modules/dnn/src/layers/im2col.hpp

@ -1,5 +1,6 @@
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "im2col.hpp"
namespace cv
{
@ -8,19 +9,24 @@ namespace dnn
//TODO: simultaneously convolution and bias addition for cache optimization
class ConvolutionLayer : public Layer
{
protected:
bool bias;
int numOutput, group;
int padH, padW;
int kerH, kerW;
int strideH, strideW;
int kernelH, kernelW;
int inH, inW, inCn, kerSize;
int outH, outW;
int groupCn, groupCnOut;
int inpH, inpW, inpCn;
int outH, outW, outCn;
int topH, topW, topCn; //switched between inp/out on deconv/conv
int inpGroupCn, outGroupCn;
int ksize;
Mat srcColsMat, biasOnesMat;
Mat colMat, biasOnesMat;
void computeOutputShape(int inH, int inW);
inline bool is1x1() const;
virtual void computeInpOutShape(const Blob &inpBlob);
void im2col(Blob &inpBlob, int imNum, int cnGroup);
public:
ConvolutionLayer(LayerParams &params);
@ -28,13 +34,25 @@ namespace dnn
void forward(std::vector<Blob*> &inputs, std::vector<Blob> &outputs);
};
class DeConvolutionLayer : public ConvolutionLayer
{
protected:
void computeInpOutShape(const Blob &inpBlob);
void col2im(Mat &dstMat);
public:
DeConvolutionLayer(LayerParams &params) : ConvolutionLayer(params) {}
void forward(std::vector<Blob*> &inputs, std::vector<Blob> &outputs);
};
REGISTER_LAYER_CLASS(Convolution, ConvolutionLayer)
REGISTER_LAYER_CLASS(Deconvolution, DeConvolutionLayer)
ConvolutionLayer::ConvolutionLayer(LayerParams &params)
{
getKernelParams(params, kernelH, kernelW, padH, padW, strideH, strideW);
getKernelParams(params, kerH, kerW, padH, padW, strideH, strideW);
numOutput = params.get<int>("num_output");
bias = params.get<bool>("bias_term", true);
@ -44,8 +62,8 @@ namespace dnn
CV_Assert(params.learnedBlobs.size() >= 1 && (!bias || params.learnedBlobs.size() >= 2));
learnedParams.assign(params.learnedBlobs.begin(), params.learnedBlobs.begin() + (bias ? 2 : 1));
Blob &weightBlob = learnedParams[0];
CV_Assert(weightBlob.cols() == kernelW && weightBlob.rows() == kernelH && weightBlob.num() == numOutput);
const Blob &wgtBlob = learnedParams[0];
CV_Assert(wgtBlob.dims() == 4 && wgtBlob.cols() == kerW && wgtBlob.rows() == kerH && wgtBlob.num() == numOutput);
if (bias)
{
@ -58,92 +76,141 @@ namespace dnn
{
CV_Assert(inputs.size() > 0);
Blob &weightBlob = learnedParams[0];
const Blob &inpBlob = *inputs[0];
CV_Assert(inpBlob.dims() == 4 && inpBlob.type() == CV_32F);
computeInpOutShape(inpBlob);
inCn = inputs[0]->channels();
CV_Assert(inCn % group == 0 && numOutput % group == 0 && weightBlob.channels() == inCn/group);
groupCnOut = numOutput / group;
groupCn = inCn / group;
CV_Assert(inpCn % group == 0 && outCn % group == 0);
CV_Assert(learnedParams[0].channels() == inpCn / group);
CV_Assert(learnedParams[0].num() == outCn);
inH = inputs[0]->rows();
inW = inputs[0]->cols();
computeOutputShape(inH, inW);
outGroupCn = outCn / group;
inpGroupCn = inpCn / group;
ksize = inpGroupCn * kerH * kerW;
outputs.resize(inputs.size());
for (size_t i = 0; i < inputs.size(); i++)
{
CV_Assert(inputs[i]->rows() == inH && inputs[i]->cols() == inW && inputs[i]->channels() == inCn);
outputs[i].create(BlobShape(inputs[i]->num(), numOutput, outH, outW));
CV_Assert(inputs[i]->type() == inpBlob.type());
CV_Assert(inputs[i]->dims() == 4 && inputs[i]->channels() == inpBlob.channels());
CV_Assert(inputs[i]->rows() == inpBlob.rows() && inputs[i]->cols() == inpBlob.cols());
outputs[i].create(BlobShape(inputs[i]->num(), topCn, topH, topW));
}
kerSize = kernelH * kernelW * groupCn;
srcColsMat.create(kerSize, outH * outW, CV_32F);
if (!is1x1())
colMat.create(ksize, outH * outW, inpBlob.type());
if (bias)
{
biasOnesMat = Mat::ones(1, outH * outW, CV_32F);
}
biasOnesMat = Mat::ones(1, topH * topW, inpBlob.type());
}
template <typename Dtype>
void im2col_cpu(const Dtype* data_im, const int channels,
const int height, const int width, const int kernel_h, const int kernel_w,
const int pad_h, const int pad_w,
const int stride_h, const int stride_w,
Dtype* data_col)
inline bool ConvolutionLayer::is1x1() const
{
int height_col = (height + 2 * pad_h - kernel_h) / stride_h + 1;
int width_col = (width + 2 * pad_w - kernel_w) / stride_w + 1;
int channels_col = channels * kernel_h * kernel_w;
for (int c = 0; c < channels_col; ++c) {
int w_offset = c % kernel_w;
int h_offset = (c / kernel_w) % kernel_h;
int c_im = c / kernel_h / kernel_w;
for (int h = 0; h < height_col; ++h) {
for (int w = 0; w < width_col; ++w) {
int h_pad = h * stride_h - pad_h + h_offset;
int w_pad = w * stride_w - pad_w + w_offset;
if (h_pad >= 0 && h_pad < height && w_pad >= 0 && w_pad < width)
data_col[(c * height_col + h) * width_col + w] =
data_im[(c_im * height + h_pad) * width + w_pad];
else
data_col[(c * height_col + h) * width_col + w] = 0;
return (kerH == 1 && kerW == 1);
}
void ConvolutionLayer::forward(std::vector<Blob*> &inputs, std::vector<Blob> &outputs)
{
Blob &wgtBlob = learnedParams[0];
for (size_t ii = 0; ii < outputs.size(); ii++)
{
Blob &inpBlob = *inputs[ii];
Blob &outBlob = outputs[ii];
for (int n = 0; n < inpBlob.num(); n++)
{
for (int g = 0; g < group; g++)
{
im2col(inpBlob, n, g);
Mat kerMat(outGroupCn, ksize, wgtBlob.type(), wgtBlob.ptrRaw(g*outGroupCn));
Mat dstMat(outGroupCn, outH*outW, outBlob.type(), outBlob.ptrRaw(n, g*outGroupCn));
cv::gemm(kerMat, colMat, 1, noArray(), 0, dstMat);
if (bias)
{
float *biasPtr = learnedParams[1].ptrf() + g*outGroupCn;
Mat biasMat(outGroupCn, 1, CV_32F, biasPtr);
cv::gemm(biasMat, biasOnesMat, 1, dstMat, 1, dstMat);
}
}
}
}
}
void ConvolutionLayer::forward(std::vector<Blob*> &inputs, std::vector<Blob> &outputs)
void ConvolutionLayer::im2col(Blob &inpBlob, int imNum, int cnGroup)
{
uchar *srcPtr = inpBlob.ptrRaw(imNum, cnGroup*inpGroupCn);
if (is1x1())
{
colMat = Mat(ksize, inpBlob.rows()*inpBlob.cols(), inpBlob.type(), srcPtr);
return;
}
if (inpBlob.type() == CV_32F)
im2col_cpu((float *)srcPtr, inpGroupCn, inpH, inpW, kerH, kerW, padH, padW, strideH, strideW, (float *)colMat.ptr());
if (inpBlob.type() == CV_64F)
im2col_cpu((double*)srcPtr, inpGroupCn, inpH, inpW, kerH, kerW, padH, padW, strideH, strideW, (double*)colMat.ptr());
}
void ConvolutionLayer::computeInpOutShape(const Blob &inpBlob)
{
CV_Assert(inputs.size() == outputs.size());
inpH = inpBlob.rows();
inpW = inpBlob.cols();
inpCn = inpBlob.channels();
float *srcColPtr = srcColsMat.ptr<float>();
outH = (inpH + 2 * padH - kerH) / strideH + 1;
outW = (inpW + 2 * padW - kerW) / strideW + 1;
outCn = learnedParams[0].num();
topH = outH; topW = outW; topCn = outCn;
}
void DeConvolutionLayer::computeInpOutShape(const Blob &inpBlob)
{
outH = inpBlob.rows();
outW = inpBlob.cols();
outCn = inpBlob.channels();
inpH = strideH * (outH - 1) + kerH - 2 * padH;
inpW = strideW * (outW - 1) + kerW - 2 * padW;
inpCn = learnedParams[0].channels();
topH = inpH; topW = inpW; topCn = inpCn;
}
void DeConvolutionLayer::forward(std::vector<Blob*> &inputs, std::vector<Blob> &outputs)
{
Blob &wghtBlob = learnedParams[0];
for (size_t ii = 0; ii < outputs.size(); ii++)
{
Blob &input = *inputs[ii];
Blob &output = outputs[ii];
int num = input.num();
Blob &convBlob = *inputs[ii];
Blob &decnBlob = outputs[ii];
for (int n = 0; n < num; n++)
for (int n = 0; n < convBlob.num(); n++)
{
for (int g = 0; g < group; g++)
{
float *srcPtr = input.ptrf(n, g*groupCn);
im2col_cpu(srcPtr, groupCn, inH, inW, kernelH, kernelW, padH, padW, strideH, strideW, srcColPtr);
Mat dstMat(inpGroupCn, inpH*inpW, decnBlob.type(), decnBlob.ptrRaw(n, g*inpGroupCn));
if (is1x1())
colMat = dstMat;
float *kerPtr = learnedParams[0].ptrf(g*groupCnOut);
float *dstPtr = output.ptrf(n, g*groupCnOut);
Mat convMat(outGroupCn, outH*outW, convBlob.type(), convBlob.ptrRaw(n, g*inpGroupCn));
Mat wghtMat(outGroupCn, ksize, wghtBlob.type(), wghtBlob.ptrRaw(g*inpGroupCn));
cv::gemm(wghtMat, convMat, 1, noArray(), 0, colMat, GEMM_1_T);
Mat kerMat(groupCnOut, kerSize, CV_32F, kerPtr);
Mat dstMat(groupCnOut, outH*outW, CV_32F, dstPtr);
cv::gemm(kerMat, srcColsMat, 1, noArray(), 0, dstMat);
col2im(dstMat);
if (bias)
{
float *biasPtr = learnedParams[1].ptrf() + g*groupCnOut;
Mat biasMat(groupCnOut, 1, CV_32F, biasPtr);
float *biasPtr = learnedParams[1].ptrf() + g*outGroupCn;
Mat biasMat(outGroupCn, 1, CV_32F, biasPtr);
cv::gemm(biasMat, biasOnesMat, 1, dstMat, 1, dstMat);
}
}
@ -151,10 +218,14 @@ namespace dnn
}
}
void ConvolutionLayer::computeOutputShape(int inH, int inW)
void DeConvolutionLayer::col2im(Mat &dstMat)
{
outH = (inH + 2 * padH - kernelH) / strideH + 1;
outW = (inW + 2 * padW - kernelW) / strideW + 1;
if (is1x1()) return;
if (dstMat.type() == CV_32F)
col2im_cpu((float*)colMat.ptr(), inpCn, inpH, inpW, kerH, kerW, padH, padW, strideH, strideW, (float*)dstMat.ptr());
if (dstMat.type() == CV_64F)
col2im_cpu((double*)colMat.ptr(), inpCn, inpH, inpW, kerH, kerW, padH, padW, strideH, strideW, (double*)dstMat.ptr());
}
}
}

@ -0,0 +1,74 @@
#ifndef __OPENCV_DNN_LAYERS_IM2COL_HPP__
#define __OPENCV_DNN_LAYERS_IM2COL_HPP__
namespace cv
{
namespace dnn
{
template <typename Dtype>
void im2col_cpu(const Dtype* data_im, const int channels,
const int height, const int width, const int kernel_h, const int kernel_w,
const int pad_h, const int pad_w,
const int stride_h, const int stride_w,
Dtype* data_col)
{
int height_col = (height + 2 * pad_h - kernel_h) / stride_h + 1;
int width_col = (width + 2 * pad_w - kernel_w) / stride_w + 1;
int channels_col = channels * kernel_h * kernel_w;
for (int c = 0; c < channels_col; ++c) {
int w_offset = c % kernel_w;
int h_offset = (c / kernel_w) % kernel_h;
int c_im = c / kernel_h / kernel_w;
for (int h = 0; h < height_col; ++h) {
for (int w = 0; w < width_col; ++w) {
int h_pad = h * stride_h - pad_h + h_offset;
int w_pad = w * stride_w - pad_w + w_offset;
if (h_pad >= 0 && h_pad < height && w_pad >= 0 && w_pad < width)
data_col[(c * height_col + h) * width_col + w] =
data_im[(c_im * height + h_pad) * width + w_pad];
else
data_col[(c * height_col + h) * width_col + w] = 0;
}
}
}
}
template <typename Dtype>
void col2im_cpu(const Dtype* data_col, const int channels,
const int height, const int width, const int patch_h, const int patch_w,
const int pad_h, const int pad_w,
const int stride_h, const int stride_w,
Dtype* data_im)
{
memset(data_im, 0, height * width * channels * sizeof(Dtype));
int height_col = (height + 2 * pad_h - patch_h) / stride_h + 1;
int width_col = (width + 2 * pad_w - patch_w) / stride_w + 1;
int channels_col = channels * patch_h * patch_w;
for (int c = 0; c < channels_col; ++c)
{
int w_offset = c % patch_w;
int h_offset = (c / patch_w) % patch_h;
int c_im = c / patch_h / patch_w;
for (int h = 0; h < height_col; ++h)
{
for (int w = 0; w < width_col; ++w)
{
int h_pad = h * stride_h - pad_h + h_offset;
int w_pad = w * stride_w - pad_w + w_offset;
if (h_pad >= 0 && h_pad < height && w_pad >= 0 && w_pad < width)
data_im[(c_im * height + h_pad) * width + w_pad] +=
data_col[(c * height_col + h) * width_col + w];
}
}
}
}
}
}
#endif
Loading…
Cancel
Save