From 9195d2e6140acecb0312d0ccf04f8cbb98a22a87 Mon Sep 17 00:00:00 2001 From: Vladislav Sovrasov Date: Wed, 11 Oct 2017 14:47:52 +0300 Subject: [PATCH] text: small adjustments in samples and image preprocessing --- modules/text/samples/dictnet_demo.cpp | 9 --------- modules/text/samples/textbox_demo.cpp | 4 ++-- modules/text/src/ocr_holistic.cpp | 4 ++++ modules/text/src/text_detectorCNN.cpp | 9 +++++---- 4 files changed, 11 insertions(+), 15 deletions(-) diff --git a/modules/text/samples/dictnet_demo.cpp b/modules/text/samples/dictnet_demo.cpp index 277a1c9be..f70f2c175 100644 --- a/modules/text/samples/dictnet_demo.cpp +++ b/modules/text/samples/dictnet_demo.cpp @@ -1,12 +1,3 @@ -/* - * dictnet_demo.cpp - * - * Demonstrates simple use of the holistic word classifier in C++ - * - * Created on: June 26, 2016 - * Author: Anguelos Nicolaou - */ - #include "opencv2/text.hpp" #include "opencv2/highgui.hpp" #include "opencv2/imgproc.hpp" diff --git a/modules/text/samples/textbox_demo.cpp b/modules/text/samples/textbox_demo.cpp index f3c292836..e6412f9f5 100644 --- a/modules/text/samples/textbox_demo.cpp +++ b/modules/text/samples/textbox_demo.cpp @@ -14,14 +14,14 @@ std::string getHelpStr(const std::string& progFname) { std::stringstream out; out << " Demo of text detection CNN for text detection." << std::endl - << " Max Jaderberg et al.: Reading Text in the Wild with Convolutional Neural Networks, IJCV 2015"< " << std::endl << " Caffe Model files (textbox.prototxt, TextBoxes_icdar13.caffemodel)"< #include -#include "opencv2/dnn.hpp" - using namespace cv::dnn; namespace cv @@ -75,20 +74,22 @@ public: void detect(InputArray inputImage_, std::vector& Bbox, std::vector& confidence) { CV_Assert(inputImage_.channels() == inputChannelCount_); - Mat inputImage = inputImage_.getMat().clone(); + Size inputSize = inputImage_.getMat().size(); Bbox.resize(0); confidence.resize(0); for(size_t i = 0; i < sizes_.size(); i++) { Size inputGeometry = sizes_[i]; + Mat inputImage = inputImage_.getMat().clone(); + resize(inputImage, inputImage, inputGeometry); net_.setInput(blobFromImage(inputImage, 1, inputGeometry, Scalar(123, 117, 104)), "data"); Mat outputNet = net_.forward(); int nbrTextBoxes = outputNet.size[2]; int nCol = outputNet.size[3]; int outputChannelCount = outputNet.size[1]; CV_Assert(outputChannelCount == 1); - getOutputs((float*)(outputNet.data), nbrTextBoxes, nCol, Bbox, confidence, inputImage.size()); + getOutputs((float*)(outputNet.data), nbrTextBoxes, nCol, Bbox, confidence, inputSize); } } };