Merge pull request #3092 from aimbot6120:sample_optimization

pull/3095/head
Alexander Alekhin 4 years ago
commit 9100b8a99f
  1. 22
      modules/text/samples/textdetection.py

@ -17,42 +17,40 @@ if (len(sys.argv) < 2):
pathname = os.path.dirname(sys.argv[0]) pathname = os.path.dirname(sys.argv[0])
img = cv.imread(str(sys.argv[1])) img = cv.imread(str(sys.argv[1]))
# for visualization # for visualization
vis = img.copy() vis = img.copy()
# Extract channels to be processed individually # Extract channels to be processed individually
channels = cv.text.computeNMChannels(img) channels = list(cv.text.computeNMChannels(img))
# Append negative channels to detect ER- (bright regions over dark background) # Append negative channels to detect ER- (bright regions over dark background)
cn = len(channels)-1 cn = len(channels)-1
for c in range(0,cn): for c in range(0,cn):
channels.append((255-channels[c])) channels.append(255-channels[c])
# Apply the default cascade classifier to each independent channel (could be done in parallel) # Apply the default cascade classifier to each independent channel (could be done in parallel)
erc1 = cv.text.loadClassifierNM1('trained_classifierNM1.xml')
er1 = cv.text.createERFilterNM1(erc1,16,0.00015,0.13,0.2,True,0.1)
erc2 = cv.text.loadClassifierNM2('trained_classifierNM2.xml')
er2 = cv.text.createERFilterNM2(erc2,0.5)
print("Extracting Class Specific Extremal Regions from "+str(len(channels))+" channels ...") print("Extracting Class Specific Extremal Regions from "+str(len(channels))+" channels ...")
print(" (...) this may take a while (...)") print(" (...) this may take a while (...)")
for channel in channels: for channel in channels:
erc1 = cv.text.loadClassifierNM1(pathname+'/trained_classifierNM1.xml')
er1 = cv.text.createERFilterNM1(erc1,16,0.00015,0.13,0.2,True,0.1)
erc2 = cv.text.loadClassifierNM2(pathname+'/trained_classifierNM2.xml')
er2 = cv.text.createERFilterNM2(erc2,0.5)
regions = cv.text.detectRegions(channel,er1,er2) regions = cv.text.detectRegions(channel,er1,er2)
rects = cv.text.erGrouping(img,channel,[r.tolist() for r in regions]) rects = cv.text.erGrouping(img,channel,[r.tolist() for r in regions])
#rects = cv.text.erGrouping(img,channel,[x.tolist() for x in regions], cv.text.ERGROUPING_ORIENTATION_ANY,'../../GSoC2014/opencv_contrib/modules/text/samples/trained_classifier_erGrouping.xml',0.5) #rects = cv.text.erGrouping(img,channel,[x.tolist() for x in regions], cv.text.ERGROUPING_ORIENTATION_ANY,'../../GSoC2014/opencv_contrib/modules/text/samples/trained_classifier_erGrouping.xml',0.5)
#Visualization #Visualization
for r in range(0,np.shape(rects)[0]): for rect in rects:
rect = rects[r]
cv.rectangle(vis, (rect[0],rect[1]), (rect[0]+rect[2],rect[1]+rect[3]), (0, 0, 0), 2) cv.rectangle(vis, (rect[0],rect[1]), (rect[0]+rect[2],rect[1]+rect[3]), (0, 0, 0), 2)
cv.rectangle(vis, (rect[0],rect[1]), (rect[0]+rect[2],rect[1]+rect[3]), (255, 255, 255), 1) cv.rectangle(vis, (rect[0],rect[1]), (rect[0]+rect[2],rect[1]+rect[3]), (255, 255, 255), 1)
#Visualization #Visualization
cv.imshow("Text detection result", vis) cv.imshow("Text detection result", vis)
cv.waitKey(0) cv.waitKey(0)

Loading…
Cancel
Save