parent
8066cee8a0
commit
90d2c69601
2 changed files with 106 additions and 2 deletions
@ -1,22 +1,119 @@ |
||||
#include "icfdetector.hpp" |
||||
#include "waldboost.hpp" |
||||
|
||||
#include <iostream> |
||||
|
||||
#include <sstream> |
||||
using std::ostringstream; |
||||
|
||||
using std::vector; |
||||
using std::string; |
||||
|
||||
#include <algorithm> |
||||
using std::min; |
||||
using std::max; |
||||
|
||||
#include <opencv2/core.hpp> |
||||
using cv::Rect; |
||||
#include <opencv2/imgproc.hpp> |
||||
#include <opencv2/highgui.hpp> |
||||
|
||||
namespace cv |
||||
{ |
||||
namespace adas |
||||
{ |
||||
|
||||
static bool overlap(const Rect& r, const vector<Rect>& gt) |
||||
{ |
||||
for( size_t i = 0; i < gt.size(); ++i ) |
||||
if( (r & gt[i]).area() ) |
||||
return true; |
||||
return false; |
||||
} |
||||
|
||||
void ICFDetector::train(const vector<string>& image_filenames, |
||||
const vector< vector<Rect> >& labelling, |
||||
ICFDetectorParams params) |
||||
{ |
||||
std::cout << "train" << std::endl; |
||||
Size model_size(params.model_n_cols, params.model_n_rows); |
||||
|
||||
vector<Mat> samples; /* positive samples + negative samples */ |
||||
Mat sample, resized_sample; |
||||
int pos_count = 0; |
||||
for( size_t i = 0; i < image_filenames.size(); ++i, ++pos_count ) |
||||
{ |
||||
Mat img = imread(image_filenames[i]); |
||||
for( size_t j = 0; j < labelling[i].size(); ++j ) |
||||
{ |
||||
Rect r = labelling[i][j]; |
||||
if( r.x > img.cols || r.y > img.rows ) |
||||
continue; |
||||
|
||||
sample = img.colRange(max(r.x, 0), min(r.width, img.cols)) |
||||
.rowRange(max(r.y, 0), min(r.height, img.rows)); |
||||
|
||||
resize(sample, resized_sample, model_size); |
||||
|
||||
samples.push_back(resized_sample); |
||||
} |
||||
} |
||||
|
||||
int neg_count = 0; |
||||
RNG rng; |
||||
for( size_t i = 0; i < image_filenames.size(); ++i, ++neg_count ) |
||||
{ |
||||
Mat img = imread(image_filenames[i]); |
||||
for( size_t j = 0; j < pos_count / image_filenames.size() + 1; ++j ) |
||||
{ |
||||
Rect r; |
||||
r.x = rng.uniform(0, img.cols); |
||||
r.width = rng.uniform(r.x + 1, img.cols); |
||||
r.y = rng.uniform(0, img.rows); |
||||
r.height = rng.uniform(r.y + 1, img.rows); |
||||
|
||||
if( !overlap(r, labelling[i]) ) |
||||
{ |
||||
sample = img.colRange(r.x, r.width).rowRange(r.y, r.height); |
||||
resize(sample, resized_sample); |
||||
samples.push_back(resized_sample); |
||||
++neg_count; |
||||
} |
||||
} |
||||
} |
||||
|
||||
Mat_<int> labels(1, pos_count + neg_count); |
||||
for( size_t i = 0; i < pos_count; ++i) |
||||
labels(0, i) = 1; |
||||
for( size_t i = pos_count; i < pos_count + neg_count; ++i ) |
||||
labels(0, i) = -1; |
||||
|
||||
vector<Point3i> features = generateFeatures(model_size); |
||||
ACFFeatureEvaluator feature_evaluator(features); |
||||
|
||||
Mat_<int> data(features.size(), samples.size()); |
||||
Mat_<int> feature_col; |
||||
|
||||
vector<Mat> channels; |
||||
for( size_t i = 0; i < samples.size(); ++i ) |
||||
{ |
||||
computeChannels(samples[i], channels); |
||||
feature_evaluator.setChannels(channels); |
||||
feature_evaluator.evaluateAll(feature_col); |
||||
for( int j = 0; j < feature_col.rows; ++j ) |
||||
data(i, j) = feature_col(0, j); |
||||
} |
||||
|
||||
WaldBoostParams wparams; |
||||
wparams.weak_count = params.weak_count; |
||||
wparams.alpha = 0.001; |
||||
|
||||
WaldBoost waldboost(wparams); |
||||
waldboost.train(data, labels); |
||||
} |
||||
|
||||
bool ICFDetector::save(const string& filename) |
||||
{ |
||||
return true; |
||||
} |
||||
|
||||
} /* namespace adas */ |
||||
} /* namespace cv */ |
||||
|
Loading…
Reference in new issue