@ -779,14 +779,14 @@ void OCRHMMClassifierKNN::eval( InputArray _mask, vector<int>& out_class, vector
{
int height = image_width * tmp . rows / tmp . cols ;
if ( height = = 0 ) height = 1 ;
resize ( tmp , tmp , Size ( image_width , height ) ) ;
resize ( tmp , tmp , Size ( image_width , height ) , 0 , 0 , INTER_LINEAR_EXACT ) ;
tmp . copyTo ( mask ( Rect ( 0 , ( image_height - height ) / 2 , image_width , height ) ) ) ;
}
else
{
int width = image_height * tmp . cols / tmp . rows ;
if ( width = = 0 ) width = 1 ;
resize ( tmp , tmp , Size ( width , image_height ) ) ;
resize ( tmp , tmp , Size ( width , image_height ) , 0 , 0 , INTER_LINEAR_EXACT ) ;
tmp . copyTo ( mask ( Rect ( ( image_width - width ) / 2 , 0 , width , image_height ) ) ) ;
}
@ -837,7 +837,7 @@ void OCRHMMClassifierKNN::eval( InputArray _mask, vector<int>& out_class, vector
copyMakeBorder ( maps [ i ] , maps [ i ] , 7 , 7 , 7 , 7 , BORDER_CONSTANT , Scalar ( 0 ) ) ;
GaussianBlur ( maps [ i ] , maps [ i ] , Size ( 7 , 7 ) , 2 , 2 ) ;
normalize ( maps [ i ] , maps [ i ] , 0 , 255 , NORM_MINMAX ) ;
resize ( maps [ i ] , maps [ i ] , Size ( image_width , image_height ) ) ;
resize ( maps [ i ] , maps [ i ] , Size ( image_width , image_height ) , 0 , 0 , INTER_LINEAR_EXACT ) ;
}
//Generate features for each bitmap
@ -1032,7 +1032,7 @@ void OCRHMMClassifierCNN::eval( InputArray _src, vector<int>& out_class, vector<
}
// shall we resize the input image or make a copy ?
resize ( img , img , Size ( window_size , window_size ) ) ;
resize ( img , img , Size ( window_size , window_size ) , 0 , 0 , INTER_LINEAR_EXACT ) ;
Mat quad ;
Mat tmp ;