parent
109da10f4f
commit
8aa47cac7e
10 changed files with 692 additions and 358 deletions
Binary file not shown.
Binary file not shown.
@ -0,0 +1,113 @@ |
||||
name: "lfw_siamese" |
||||
input: "data" |
||||
input_dim: 10000 |
||||
input_dim: 1 |
||||
input_dim: 150 |
||||
input_dim: 130 |
||||
layer { |
||||
name: "conv1" |
||||
type: "Convolution" |
||||
bottom: "data" |
||||
top: "conv1" |
||||
param { |
||||
lr_mult: 1 |
||||
} |
||||
param { |
||||
lr_mult: 2 |
||||
} |
||||
convolution_param { |
||||
num_output: 20 |
||||
kernel_size: 5 |
||||
stride: 1 |
||||
} |
||||
} |
||||
layer { |
||||
name: "pool1" |
||||
type: "Pooling" |
||||
bottom: "conv1" |
||||
top: "pool1" |
||||
pooling_param { |
||||
pool: MAX |
||||
kernel_size: 2 |
||||
stride: 2 |
||||
} |
||||
} |
||||
layer { |
||||
name: "conv2" |
||||
type: "Convolution" |
||||
bottom: "pool1" |
||||
top: "conv2" |
||||
param { |
||||
lr_mult: 1 |
||||
} |
||||
param { |
||||
lr_mult: 2 |
||||
} |
||||
convolution_param { |
||||
num_output: 50 |
||||
kernel_size: 5 |
||||
stride: 1 |
||||
} |
||||
} |
||||
layer { |
||||
name: "pool2" |
||||
type: "Pooling" |
||||
bottom: "conv2" |
||||
top: "pool2" |
||||
pooling_param { |
||||
pool: MAX |
||||
kernel_size: 2 |
||||
stride: 2 |
||||
} |
||||
} |
||||
layer { |
||||
name: "ip1" |
||||
type: "InnerProduct" |
||||
bottom: "pool2" |
||||
top: "ip1" |
||||
param { |
||||
lr_mult: 1 |
||||
} |
||||
param { |
||||
lr_mult: 2 |
||||
} |
||||
inner_product_param { |
||||
num_output: 500 |
||||
} |
||||
} |
||||
layer { |
||||
name: "relu1" |
||||
type: "ReLU" |
||||
bottom: "ip1" |
||||
top: "ip1" |
||||
} |
||||
layer { |
||||
name: "ip2" |
||||
type: "InnerProduct" |
||||
bottom: "ip1" |
||||
top: "ip2" |
||||
param { |
||||
lr_mult: 1 |
||||
} |
||||
param { |
||||
lr_mult: 2 |
||||
} |
||||
inner_product_param { |
||||
num_output: 10 |
||||
} |
||||
} |
||||
layer { |
||||
name: "feat" |
||||
type: "InnerProduct" |
||||
bottom: "ip2" |
||||
top: "feat" |
||||
param { |
||||
lr_mult: 1 |
||||
} |
||||
param { |
||||
lr_mult: 2 |
||||
} |
||||
inner_product_param { |
||||
num_output: 2 |
||||
} |
||||
} |
@ -0,0 +1,25 @@ |
||||
# The train/test net protocol buffer definition |
||||
net: "examples/triplet/lfw_triplet_train_test.prototxt" |
||||
# test_iter specifies how many forward passes the test should carry out. |
||||
# In the case of lfw, we have test batch size 100 and 100 test iterations, |
||||
# covering the full 10,000 testing images. |
||||
test_iter: 100 |
||||
# Carry out testing every 500 training iterations. |
||||
test_interval: 500 |
||||
# The base learning rate, momentum and the weight decay of the network. |
||||
base_lr: 0.01 |
||||
momentum: 0.9 |
||||
weight_decay: 0.0000 |
||||
# The learning rate policy |
||||
lr_policy: "inv" |
||||
gamma: 0.0001 |
||||
power: 0.75 |
||||
# Display every 100 iterations |
||||
display: 100 |
||||
# The maximum number of iterations |
||||
max_iter: 50000 |
||||
# snapshot intermediate results |
||||
snapshot: 5000 |
||||
snapshot_prefix: "examples/triplet/lfw_triplet" |
||||
# solver mode: CPU or GPU |
||||
solver_mode: CPU |
@ -0,0 +1,500 @@ |
||||
name: "lfw_triplet_train_test" |
||||
layer { |
||||
name: "triplet_data" |
||||
type: "Data" |
||||
top: "triplet_data" |
||||
top: "sim" |
||||
include { |
||||
phase: TRAIN |
||||
} |
||||
transform_param { |
||||
scale: 0.00390625 |
||||
} |
||||
data_param { |
||||
source: "examples/triplet/lfw_triplet_train_leveldb" |
||||
batch_size: 64 |
||||
} |
||||
} |
||||
layer { |
||||
name: "triplet_data" |
||||
type: "Data" |
||||
top: "triplet_data" |
||||
top: "sim" |
||||
include { |
||||
phase: TEST |
||||
} |
||||
transform_param { |
||||
scale: 0.00390625 |
||||
} |
||||
data_param { |
||||
source: "examples/triplet/lfw_triplet_test_leveldb" |
||||
batch_size: 100 |
||||
} |
||||
} |
||||
layer { |
||||
name: "slice_triplet" |
||||
type: "Slice" |
||||
bottom: "triplet_data" |
||||
top: "data" |
||||
top: "data_true" |
||||
top: "data_false" |
||||
slice_param { |
||||
slice_dim: 1 |
||||
slice_point: 1 |
||||
slice_point: 2 |
||||
} |
||||
} |
||||
layer { |
||||
name: "conv1" |
||||
type: "Convolution" |
||||
bottom: "data" |
||||
top: "conv1" |
||||
param { |
||||
name: "conv1_w" |
||||
lr_mult: 1 |
||||
} |
||||
param { |
||||
name: "conv1_b" |
||||
lr_mult: 2 |
||||
} |
||||
convolution_param { |
||||
num_output: 20 |
||||
kernel_size: 5 |
||||
stride: 1 |
||||
weight_filler { |
||||
type: "xavier" |
||||
} |
||||
bias_filler { |
||||
type: "constant" |
||||
} |
||||
} |
||||
} |
||||
layer { |
||||
name: "pool1" |
||||
type: "Pooling" |
||||
bottom: "conv1" |
||||
top: "pool1" |
||||
pooling_param { |
||||
pool: MAX |
||||
kernel_size: 2 |
||||
stride: 2 |
||||
} |
||||
} |
||||
layer { |
||||
name: "conv2" |
||||
type: "Convolution" |
||||
bottom: "pool1" |
||||
top: "conv2" |
||||
param { |
||||
name: "conv2_w" |
||||
lr_mult: 1 |
||||
} |
||||
param { |
||||
name: "conv2_b" |
||||
lr_mult: 2 |
||||
} |
||||
convolution_param { |
||||
num_output: 50 |
||||
kernel_size: 5 |
||||
stride: 1 |
||||
weight_filler { |
||||
type: "xavier" |
||||
} |
||||
bias_filler { |
||||
type: "constant" |
||||
} |
||||
} |
||||
} |
||||
layer { |
||||
name: "pool2" |
||||
type: "Pooling" |
||||
bottom: "conv2" |
||||
top: "pool2" |
||||
pooling_param { |
||||
pool: MAX |
||||
kernel_size: 2 |
||||
stride: 2 |
||||
} |
||||
} |
||||
layer { |
||||
name: "ip1" |
||||
type: "InnerProduct" |
||||
bottom: "pool2" |
||||
top: "ip1" |
||||
param { |
||||
name: "ip1_w" |
||||
lr_mult: 1 |
||||
} |
||||
param { |
||||
name: "ip1_b" |
||||
lr_mult: 2 |
||||
} |
||||
inner_product_param { |
||||
num_output: 500 |
||||
weight_filler { |
||||
type: "xavier" |
||||
} |
||||
bias_filler { |
||||
type: "constant" |
||||
} |
||||
} |
||||
} |
||||
layer { |
||||
name: "relu1" |
||||
type: "ReLU" |
||||
bottom: "ip1" |
||||
top: "ip1" |
||||
} |
||||
layer { |
||||
name: "ip2" |
||||
type: "InnerProduct" |
||||
bottom: "ip1" |
||||
top: "ip2" |
||||
param { |
||||
name: "ip2_w" |
||||
lr_mult: 1 |
||||
} |
||||
param { |
||||
name: "ip2_b" |
||||
lr_mult: 2 |
||||
} |
||||
inner_product_param { |
||||
num_output: 10 |
||||
weight_filler { |
||||
type: "xavier" |
||||
} |
||||
bias_filler { |
||||
type: "constant" |
||||
} |
||||
} |
||||
} |
||||
layer { |
||||
name: "feat" |
||||
type: "InnerProduct" |
||||
bottom: "ip2" |
||||
top: "feat" |
||||
param { |
||||
name: "feat_w" |
||||
lr_mult: 1 |
||||
} |
||||
param { |
||||
name: "feat_b" |
||||
lr_mult: 2 |
||||
} |
||||
inner_product_param { |
||||
num_output: 2 |
||||
weight_filler { |
||||
type: "xavier" |
||||
} |
||||
bias_filler { |
||||
type: "constant" |
||||
} |
||||
} |
||||
} |
||||
layer { |
||||
name: "conv1_true" |
||||
type: "Convolution" |
||||
bottom: "data_true" |
||||
top: "conv1_true" |
||||
param { |
||||
name: "conv1_w" |
||||
lr_mult: 1 |
||||
} |
||||
param { |
||||
name: "conv1_b" |
||||
lr_mult: 2 |
||||
} |
||||
convolution_param { |
||||
num_output: 20 |
||||
kernel_size: 5 |
||||
stride: 1 |
||||
weight_filler { |
||||
type: "xavier" |
||||
} |
||||
bias_filler { |
||||
type: "constant" |
||||
} |
||||
} |
||||
} |
||||
layer { |
||||
name: "pool1_true" |
||||
type: "Pooling" |
||||
bottom: "conv1_true" |
||||
top: "pool1_true" |
||||
pooling_param { |
||||
pool: MAX |
||||
kernel_size: 2 |
||||
stride: 2 |
||||
} |
||||
} |
||||
layer { |
||||
name: "conv2_true" |
||||
type: "Convolution" |
||||
bottom: "pool1_true" |
||||
top: "conv2_true" |
||||
param { |
||||
name: "conv2_w" |
||||
lr_mult: 1 |
||||
} |
||||
param { |
||||
name: "conv2_b" |
||||
lr_mult: 2 |
||||
} |
||||
convolution_param { |
||||
num_output: 50 |
||||
kernel_size: 5 |
||||
stride: 1 |
||||
weight_filler { |
||||
type: "xavier" |
||||
} |
||||
bias_filler { |
||||
type: "constant" |
||||
} |
||||
} |
||||
} |
||||
layer { |
||||
name: "pool2_true" |
||||
type: "Pooling" |
||||
bottom: "conv2_true" |
||||
top: "pool2_true" |
||||
pooling_param { |
||||
pool: MAX |
||||
kernel_size: 2 |
||||
stride: 2 |
||||
} |
||||
} |
||||
layer { |
||||
name: "ip1_true" |
||||
type: "InnerProduct" |
||||
bottom: "pool2_true" |
||||
top: "ip1_true" |
||||
param { |
||||
name: "ip1_w" |
||||
lr_mult: 1 |
||||
} |
||||
param { |
||||
name: "ip1_b" |
||||
lr_mult: 2 |
||||
} |
||||
inner_product_param { |
||||
num_output: 500 |
||||
weight_filler { |
||||
type: "xavier" |
||||
} |
||||
bias_filler { |
||||
type: "constant" |
||||
} |
||||
} |
||||
} |
||||
layer { |
||||
name: "relu1_true" |
||||
type: "ReLU" |
||||
bottom: "ip1_true" |
||||
top: "ip1_true" |
||||
} |
||||
layer { |
||||
name: "ip2_true" |
||||
type: "InnerProduct" |
||||
bottom: "ip1_true" |
||||
top: "ip2_true" |
||||
param { |
||||
name: "ip2_w" |
||||
lr_mult: 1 |
||||
} |
||||
param { |
||||
name: "ip2_b" |
||||
lr_mult: 2 |
||||
} |
||||
inner_product_param { |
||||
num_output: 10 |
||||
weight_filler { |
||||
type: "xavier" |
||||
} |
||||
bias_filler { |
||||
type: "constant" |
||||
} |
||||
} |
||||
} |
||||
layer { |
||||
name: "feat_true" |
||||
type: "InnerProduct" |
||||
bottom: "ip2_true" |
||||
top: "feat_true" |
||||
param { |
||||
name: "feat_w" |
||||
lr_mult: 1 |
||||
} |
||||
param { |
||||
name: "feat_b" |
||||
lr_mult: 2 |
||||
} |
||||
inner_product_param { |
||||
num_output: 2 |
||||
weight_filler { |
||||
type: "xavier" |
||||
} |
||||
bias_filler { |
||||
type: "constant" |
||||
} |
||||
} |
||||
} |
||||
layer { |
||||
name: "conv1_false" |
||||
type: "Convolution" |
||||
bottom: "data_false" |
||||
top: "conv1_false" |
||||
param { |
||||
name: "conv1_w" |
||||
lr_mult: 1 |
||||
} |
||||
param { |
||||
name: "conv1_b" |
||||
lr_mult: 2 |
||||
} |
||||
convolution_param { |
||||
num_output: 20 |
||||
kernel_size: 5 |
||||
stride: 1 |
||||
weight_filler { |
||||
type: "xavier" |
||||
} |
||||
bias_filler { |
||||
type: "constant" |
||||
} |
||||
} |
||||
} |
||||
layer { |
||||
name: "pool1_false" |
||||
type: "Pooling" |
||||
bottom: "conv1_false" |
||||
top: "pool1_false" |
||||
pooling_param { |
||||
pool: MAX |
||||
kernel_size: 2 |
||||
stride: 2 |
||||
} |
||||
} |
||||
layer { |
||||
name: "conv2_false" |
||||
type: "Convolution" |
||||
bottom: "pool1_false" |
||||
top: "conv2_false" |
||||
param { |
||||
name: "conv2_w" |
||||
lr_mult: 1 |
||||
} |
||||
param { |
||||
name: "conv2_b" |
||||
lr_mult: 2 |
||||
} |
||||
convolution_param { |
||||
num_output: 50 |
||||
kernel_size: 5 |
||||
stride: 1 |
||||
weight_filler { |
||||
type: "xavier" |
||||
} |
||||
bias_filler { |
||||
type: "constant" |
||||
} |
||||
} |
||||
} |
||||
layer { |
||||
name: "pool2_false" |
||||
type: "Pooling" |
||||
bottom: "conv2_false" |
||||
top: "pool2_false" |
||||
pooling_param { |
||||
pool: MAX |
||||
kernel_size: 2 |
||||
stride: 2 |
||||
} |
||||
} |
||||
layer { |
||||
name: "ip1_false" |
||||
type: "InnerProduct" |
||||
bottom: "pool2_false" |
||||
top: "ip1_false" |
||||
param { |
||||
name: "ip1_w" |
||||
lr_mult: 1 |
||||
} |
||||
param { |
||||
name: "ip1_b" |
||||
lr_mult: 2 |
||||
} |
||||
inner_product_param { |
||||
num_output: 500 |
||||
weight_filler { |
||||
type: "xavier" |
||||
} |
||||
bias_filler { |
||||
type: "constant" |
||||
} |
||||
} |
||||
} |
||||
layer { |
||||
name: "relu1_false" |
||||
type: "ReLU" |
||||
bottom: "ip1_false" |
||||
top: "ip1_false" |
||||
} |
||||
layer { |
||||
name: "ip2_false" |
||||
type: "InnerProduct" |
||||
bottom: "ip1_false" |
||||
top: "ip2_false" |
||||
param { |
||||
name: "ip2_w" |
||||
lr_mult: 1 |
||||
} |
||||
param { |
||||
name: "ip2_b" |
||||
lr_mult: 2 |
||||
} |
||||
inner_product_param { |
||||
num_output: 10 |
||||
weight_filler { |
||||
type: "xavier" |
||||
} |
||||
bias_filler { |
||||
type: "constant" |
||||
} |
||||
} |
||||
} |
||||
layer { |
||||
name: "feat_false" |
||||
type: "InnerProduct" |
||||
bottom: "ip2_false" |
||||
top: "feat_false" |
||||
param { |
||||
name: "feat_w" |
||||
lr_mult: 1 |
||||
} |
||||
param { |
||||
name: "feat_b" |
||||
lr_mult: 2 |
||||
} |
||||
inner_product_param { |
||||
num_output: 2 |
||||
weight_filler { |
||||
type: "xavier" |
||||
} |
||||
bias_filler { |
||||
type: "constant" |
||||
} |
||||
} |
||||
} |
||||
layer { |
||||
name: "loss" |
||||
type: "TripletLoss" |
||||
bottom: "feat" |
||||
bottom: "feat_true" |
||||
bottom: "feat_false" |
||||
bottom: "sim" |
||||
top: "loss" |
||||
triplet_loss_param { |
||||
margin: 0.2 |
||||
} |
||||
} |
||||
|
@ -0,0 +1,36 @@ |
||||
#!/usr/bin/env sh |
||||
# This script converts the lfw data into leveldb format. |
||||
|
||||
git clone https://github.com/Wangyida/caffe/tree/cnn_triplet |
||||
cd caffe |
||||
mkdir build |
||||
cd build |
||||
cmake -DCMAKE_INSTALL_PREFIX=/usr/local .. |
||||
make -j4 |
||||
make test |
||||
make install |
||||
cd .. |
||||
cmake .. |
||||
make -j4 |
||||
|
||||
./sphereview_test -radius=250 -ite_depth=4 -plymodel=../ape.ply -imagedir=../data/images_ape/ -labeldir=../data/label_ape.txt -num_class=3 -label_class=0 |
||||
./sphereview_test -radius=250 -ite_depth=4 -plymodel=../duck.ply -imagedir=../data/images_duck/ -labeldir=../data/label_duck.txt -num_class=3 -label_class=1 |
||||
./sphereview_test -radius=250 -ite_depth=4 -plymodel=../cat.ply -imagedir=../data/images_cat/ -labeldir=../data/label_cat.txt -num_class=3 -label_class=2 |
||||
|
||||
echo "Creating leveldb..." |
||||
|
||||
rm -rf ./linemod_triplet_train_leveldb |
||||
rm -rf ./linemod_triplet_test_leveldb |
||||
|
||||
convert_lfw_triplet_data \ |
||||
./binary_image_train \ |
||||
./binary_label_train \ |
||||
./linemod_triplet_train_leveldb |
||||
convert_lfw_triplet_data \ |
||||
./binary_image_test \ |
||||
./binary_image_test \ |
||||
./linemod_triplet_test_leveldb |
||||
|
||||
echo "Done." |
||||
|
||||
caffe train --solver=examples/triplet/lfw_triplet_solver.prototxt |
@ -1,351 +0,0 @@ |
||||
0 0.707107 0.707107 |
||||
0.211325 0.57735 0.788675 |
||||
-0.211325 0.57735 0.788675 |
||||
0.408248 0.408248 0.816497 |
||||
0 0.447214 0.894427 |
||||
0.211325 0.57735 0.788675 |
||||
-0.408248 0.408248 0.816497 |
||||
-0.211325 0.57735 0.788675 |
||||
0.211325 0.57735 0.788675 |
||||
-0.211325 0.57735 0.788675 |
||||
0.707107 0 0.707107 |
||||
0.382683 0 0.92388 |
||||
0.57735 0.211325 0.788675 |
||||
0 0 1 |
||||
0.214187 0.214187 0.953021 |
||||
0.57735 0.211325 0.788675 |
||||
0.57735 0.211325 0.788675 |
||||
-0.707107 0 0.707107 |
||||
-0.57735 0.211325 0.788675 |
||||
-0.382683 0 0.92388 |
||||
-0.214187 0.214187 0.953021 |
||||
-0.57735 0.211325 0.788675 |
||||
-0.57735 0.211325 0.788675 |
||||
-0.707107 0.707107 0 |
||||
-0.57735 0.788675 0.211325 |
||||
-0.408248 0.816497 0.408248 |
||||
-0.211325 0.788675 0.57735 |
||||
0 0.707107 -0.707107 |
||||
0 0.92388 -0.382683 |
||||
0 1 4.21468e-08 |
||||
0 0.92388 0.382683 |
||||
0.211325 0.788675 -0.57735 |
||||
0 0.92388 -0.382683 |
||||
0.408248 0.816497 -0.408248 |
||||
0.214186 0.953021 -0.214187 |
||||
0 1 0 |
||||
0.707107 0.707107 0 |
||||
0.57735 0.788675 0.211325 |
||||
0.57735 0.788675 -0.211325 |
||||
0.408248 0.816497 0.408248 |
||||
0.447214 0.894427 0 |
||||
0 0.92388 0.382683 |
||||
0.211325 0.788675 0.57735 |
||||
0.214186 0.953021 0.214187 |
||||
0.788675 0.57735 0.211325 |
||||
0.816497 0.408248 0.408248 |
||||
0.788675 0.211325 0.57735 |
||||
0.707107 -0.707107 0 |
||||
0.788675 -0.57735 0.211325 |
||||
0.92388 -0.382683 0 |
||||
0.816497 -0.408248 0.408248 |
||||
0.953021 -0.214186 0.214187 |
||||
1 4.21468e-08 0 |
||||
0.788675 -0.211325 0.57735 |
||||
0.894427 1.63234e-08 0.447214 |
||||
0.92388 0.382683 0 |
||||
0.953021 0.214187 0.214187 |
||||
0.707107 0 -0.707107 |
||||
0.788675 -0.211325 -0.57735 |
||||
0.57735 0.211325 -0.788675 |
||||
0.816497 -0.408248 -0.408248 |
||||
0.408248 0.408248 -0.816497 |
||||
0.57735 0.211325 -0.788675 |
||||
0.57735 0.211325 -0.788675 |
||||
0.816497 -0.408248 -0.408248 |
||||
0.788675 -0.57735 -0.211325 |
||||
0.211325 0.57735 -0.788675 |
||||
0.408248 0.408248 -0.816497 |
||||
0.788675 0.211325 -0.57735 |
||||
0.816497 0.408248 -0.408248 |
||||
0.639602 0.426401 -0.639602 |
||||
0.788675 0.57735 -0.211325 |
||||
0.408248 0.816497 -0.408248 |
||||
0.639602 0.639602 -0.426401 |
||||
0.211325 0.57735 -0.788675 |
||||
0.211325 0.788675 -0.57735 |
||||
0.426401 0.639602 -0.639602 |
||||
0.211325 0.57735 -0.788675 |
||||
0.211325 0.57735 -0.788675 |
||||
-0.707107 0 -0.707107 |
||||
-0.382683 0 -0.92388 |
||||
0 0 -1 |
||||
0.382683 0 -0.92388 |
||||
0 -0.707107 -0.707107 |
||||
0.211325 -0.57735 -0.788675 |
||||
0.408248 -0.408248 -0.816497 |
||||
0.211325 -0.57735 -0.788675 |
||||
0.211325 -0.57735 -0.788675 |
||||
0.57735 -0.211325 -0.788675 |
||||
0.57735 -0.211325 -0.788675 |
||||
0.57735 -0.211325 -0.788675 |
||||
0.788675 -0.57735 -0.211325 |
||||
0.57735 -0.788675 -0.211325 |
||||
0.639602 -0.639602 -0.426401 |
||||
0.408248 -0.816497 -0.408248 |
||||
0.639602 -0.426401 -0.639602 |
||||
0.211325 -0.788675 -0.57735 |
||||
0.426401 -0.639602 -0.639602 |
||||
0 -0.707107 0.707107 |
||||
0.211325 -0.788675 0.57735 |
||||
0 -0.92388 0.382683 |
||||
0.408248 -0.816497 0.408248 |
||||
0.214187 -0.953021 0.214186 |
||||
0 -1 -4.21468e-08 |
||||
0.57735 -0.788675 0.211325 |
||||
0.447214 -0.894427 -1.63234e-08 |
||||
0 -0.92388 -0.382683 |
||||
0.214187 -0.953021 -0.214187 |
||||
-0.707107 -0.707107 0 |
||||
-0.57735 -0.788675 0.211325 |
||||
-0.408248 -0.816497 0.408248 |
||||
-0.211325 -0.788675 0.57735 |
||||
-0.57735 -0.211325 0.788675 |
||||
-0.408248 -0.408248 0.816497 |
||||
-0.57735 -0.211325 0.788675 |
||||
-0.57735 -0.211325 0.788675 |
||||
-0.211325 -0.57735 0.788675 |
||||
-0.211325 -0.57735 0.788675 |
||||
-0.211325 -0.57735 0.788675 |
||||
0.57735 -0.211325 0.788675 |
||||
0.408248 -0.408248 0.816497 |
||||
0.57735 -0.211325 0.788675 |
||||
0.57735 -0.211325 0.788675 |
||||
0.211325 -0.57735 0.788675 |
||||
0.211325 -0.57735 0.788675 |
||||
0.211325 -0.57735 0.788675 |
||||
0.788675 -0.211325 0.57735 |
||||
0.816497 -0.408248 0.408248 |
||||
0.57735 0.211325 0.788675 |
||||
-nan -nan -nan |
||||
-nan -nan -nan |
||||
-nan -nan -nan |
||||
-nan -nan -nan |
||||
-nan -nan -nan |
||||
-nan -nan -nan |
||||
-nan -nan -nan |
||||
-nan -nan -nan |
||||
06898 7.62273e-09 0.59069 |
||||
0.788675 -0.211325 0.57735 |
||||
0.874728 0.208721 0.437364 |
||||
0.894427 1.63234e-08 0.447214 |
||||
0.849313 0.106637 0.517007 |
||||
0.809511 -0.31246 0.497052 |
||||
0.874728 -0.208721 0.437364 |
||||
0.849313 -0.106637 0.517007 |
||||
0.83147 0.55557 0 |
||||
0.92388 0.382683 0 |
||||
0.867278 0.486184 0.10702 |
||||
0.988185 0.108374 0.108374 |
||||
0.980785 0.19509 0 |
||||
0.953021 0.214187 0.214187 |
||||
0.947388 0.301277 0.108113 |
||||
0.895337 0.314938 0.314938 |
||||
0.888679 0.403872 0.217112 |
||||
0.935925 -0.108508 0.335068 |
||||
0.935925 0.108508 0.335068 |
||||
0.975663 2.28828e-08 0.219275 |
||||
0.707107 0 -0.707107 |
||||
0.754344 -0.106574 -0.64777 |
||||
0.64777 0.106574 -0.754344 |
||||
0.788675 -0.211325 -0.57735 |
||||
0.57735 0.211325 -0.788675 |
||||
0.816497 -0.408248 -0.408248 |
||||
0.809511 -0.31246 -0.497052 |
||||
0.408248 0.408248 -0.816497 |
||||
0.497052 0.31246 -0.809511 |
||||
0.57735 0.211325 -0.788675 |
||||
0.57735 0.211325 -0.788675 |
||||
0.64777 0.106574 -0.754344 |
||||
0.707107 -7.71341e-09 -0.707107 |
||||
0.788675 -0.57735 -0.211325 |
||||
0.754344 -0.64777 -0.106574 |
||||
0.816497 -0.408248 -0.408248 |
||||
0.809511 -0.497052 -0.31246 |
||||
0.788675 -0.57735 -0.211325 |
||||
0.809511 -0.31246 -0.497052 |
||||
0.809511 -0.497052 -0.31246 |
||||
0.106574 0.64777 -0.754344 |
||||
0.211325 0.57735 -0.788675 |
||||
0.211325 0.57735 -0.788675 |
||||
0.31246 0.497052 -0.809511 |
||||
0.408248 0.408248 -0.816497 |
||||
0.211325 0.57735 -0.788675 |
||||
0.211325 0.57735 -0.788675 |
||||
0.497052 0.31246 -0.809511 |
||||
0.31246 0.497052 -0.809511 |
||||
0.497052 0.31246 -0.809511 |
||||
0.754344 0.106574 -0.64777 |
||||
0.788675 0.211325 -0.57735 |
||||
0.690768 0.213724 -0.690768 |
||||
0.816497 0.408248 -0.408248 |
||||
0.735924 0.421839 -0.529592 |
||||
0.809511 0.31246 -0.497052 |
||||
0.639602 0.426401 -0.639602 |
||||
0.720687 0.321787 -0.614055 |
||||
0.529592 0.421839 -0.735924 |
||||
0.614055 0.321787 -0.720687 |
||||
0.754344 0.64777 -0.106574 |
||||
0.690768 0.690768 -0.213724 |
||||
0.788675 0.57735 -0.211325 |
||||
0.408248 0.816497 -0.408248 |
||||
0.529592 0.735924 -0.421839 |
||||
0.497052 0.809511 -0.31246 |
||||
0.639602 0.639602 -0.426401 |
||||
0.614055 0.720687 -0.321787 |
||||
0.809511 0.497052 -0.31246 |
||||
0.735924 0.529592 -0.421839 |
||||
0.720687 0.614055 -0.321787 |
||||
0.106574 0.64777 -0.754344 |
||||
0.106574 0.754344 -0.64777 |
||||
0.213724 0.690768 -0.690768 |
||||
0.211325 0.788675 -0.57735 |
||||
0.421839 0.529592 -0.735924 |
||||
0.31246 0.497052 -0.809511 |
||||
0.426401 0.639602 -0.639602 |
||||
0.321787 0.614055 -0.720687 |
||||
0.31246 0.809511 -0.497052 |
||||
0.421839 0.735924 -0.529592 |
||||
0.321787 0.720687 -0.614055 |
||||
0.646997 0.539164 -0.539164 |
||||
0.539164 0.646997 -0.539164 |
||||
0.539164 0.539164 -0.646997 |
||||
-0.707107 0 -0.707107 |
||||
-0.55557 0 -0.83147 |
||||
-0.382683 0 -0.92388 |
||||
0 0 -1 |
||||
-0.19509 0 -0.980785 |
||||
0.55557 0 -0.83147 |
||||
0.382683 0 -0.92388 |
||||
0.19509 0 -0.980785 |
||||
0 -0.707107 -0.707107 |
||||
0.106574 -0.64777 -0.754344 |
||||
0.211325 -0.57735 -0.788675 |
||||
0.408248 -0.408248 -0.816497 |
||||
0.31246 -0.497052 -0.809511 |
||||
0.31246 -0.497052 -0.809511 |
||||
0.211325 -0.57735 -0.788675 |
||||
0.106574 -0.64777 -0.754344 |
||||
0.64777 -0.106574 -0.754344 |
||||
0.57735 -0.211325 -0.788675 |
||||
0.57735 -0.211325 -0.788675 |
||||
0.497052 -0.31246 -0.809511 |
||||
0.754344 -0.64777 -0.106574 |
||||
0.64777 -0.754344 -0.106574 |
||||
0.690768 -0.690768 -0.213724 |
||||
0.57735 -0.788675 -0.211325 |
||||
0.735924 -0.529592 -0.421839 |
||||
0.639602 -0.639602 -0.426401 |
||||
0.720687 -0.614055 -0.321787 |
||||
0.408248 -0.816497 -0.408248 |
||||
0.497052 -0.809511 -0.31246 |
||||
0.529592 -0.735924 -0.421839 |
||||
0.614055 -0.720687 -0.321787 |
||||
0.690768 -0.213724 -0.690768 |
||||
0.529592 -0.421839 -0.735924 |
||||
0.639602 -0.426401 -0.639602 |
||||
0.614055 -0.321787 -0.720687 |
||||
0.735924 -0.421839 -0.529592 |
||||
0.720687 -0.321787 -0.614055 |
||||
0.106574 -0.754344 -0.64777 |
||||
0.211325 -0.788675 -0.57735 |
||||
0.213724 -0.690768 -0.690768 |
||||
0.421839 -0.735924 -0.529592 |
||||
0.31246 -0.809511 -0.497052 |
||||
0.426401 -0.639602 -0.639602 |
||||
0.321787 -0.720687 -0.614055 |
||||
0.421839 -0.529592 -0.735924 |
||||
0.321787 -0.614055 -0.720687 |
||||
0.646997 -0.539164 -0.539164 |
||||
0.539164 -0.539164 -0.646997 |
||||
0.539164 -0.646997 -0.539164 |
||||
0 -0.707107 0.707107 |
||||
0.106574 -0.754344 0.64777 |
||||
0 -0.83147 0.55557 |
||||
0.211325 -0.788675 0.57735 |
||||
0.10702 -0.867278 0.486184 |
||||
0 -0.92388 0.382683 |
||||
0.408248 -0.816497 0.408248 |
||||
0.314938 -0.895337 0.314938 |
||||
0.31246 -0.809511 0.497052 |
||||
0.214187 -0.953021 0.214186 |
||||
0.217112 -0.888679 0.403872 |
||||
0 -1 -4.21468e-08 |
||||
0 -0.980785 0.19509 |
||||
0.108374 -0.988185 0.108374 |
||||
0.108113 -0.947388 0.301277 |
||||
0.64777 -0.754344 0.106574 |
||||
0.59069 -0.806898 -7.62273e-09 |
||||
0.57735 -0.788675 0.211325 |
||||
0.437364 -0.874728 -0.208721 |
||||
0.447214 -0.894427 -1.63234e-08 |
||||
0.517007 -0.849313 -0.106637 |
||||
0.517007 -0.849313 -0.106637 |
||||
0.517007 -0.849313 -0.106637 |
||||
0.497052 -0.809511 0.31246 |
||||
0.437364 -0.874728 0.208721 |
||||
0.517007 -0.849313 0.106637 |
||||
0.517007 -0.849313 0.106637 |
||||
0.517007 -0.849313 0.106637 |
||||
0 -0.83147 -0.55557 |
||||
0 -0.92388 -0.382683 |
||||
0.10702 -0.867278 -0.486184 |
||||
0.108374 -0.988185 -0.108374 |
||||
0 -0.980785 -0.19509 |
||||
0.214187 -0.953021 -0.214187 |
||||
0.108113 -0.947388 -0.301277 |
||||
0.314938 -0.895337 -0.314938 |
||||
0.217112 -0.888679 -0.403872 |
||||
0.335068 -0.935925 0.108508 |
||||
0.335068 -0.935925 -0.108508 |
||||
0.219275 -0.975663 -2.28828e-08 |
||||
-0.707107 -0.707107 0 |
||||
-0.64777 -0.754344 0.106574 |
||||
-0.57735 -0.788675 0.211325 |
||||
-0.408248 -0.816497 0.408248 |
||||
-0.497052 -0.809511 0.31246 |
||||
-0.106574 -0.754344 0.64777 |
||||
-0.211325 -0.788675 0.57735 |
||||
-0.31246 -0.809511 0.497052 |
||||
-0.64777 -0.106574 0.754344 |
||||
-0.57735 -0.211325 0.788675 |
||||
-0.408248 -0.408248 0.816497 |
||||
-0.497052 -0.31246 0.809511 |
||||
-0.497052 -0.31246 0.809511 |
||||
-0.57735 -0.211325 0.788675 |
||||
-0.64777 -0.106574 0.754344 |
||||
-0.106574 -0.64777 0.754344 |
||||
-0.211325 -0.57735 0.788675 |
||||
-0.211325 -0.57735 0.788675 |
||||
-0.31246 -0.497052 0.809511 |
||||
0.64777 -0.106574 0.754344 |
||||
0.57735 -0.211325 0.788675 |
||||
0.57735 -0.211325 0.788675 |
||||
0.408248 -0.408248 0.816497 |
||||
0.497052 -0.31246 0.809511 |
||||
0.106574 -0.64777 0.754344 |
||||
0.211325 -0.57735 0.788675 |
||||
0.31246 -0.497052 0.809511 |
||||
0.211325 -0.57735 0.788675 |
||||
0.106574 -0.64777 0.754344 |
||||
0.31246 -0.497052 0.809511 |
||||
0.754344 -0.106574 0.64777 |
||||
0.57735 0.211325 0.788675 |
||||
0.788675 -0.211325 0.57735 |
||||
0.816497 -0.408248 0.408248 |
||||
0.754344 -0.106574 0.64777 |
||||
0.809511 -0.31246 0.497052 |
||||
0.57735 0.211325 0.788675 |
||||
0.211325 0.57735 0.788675 |
||||
0.31246 0.497052 0.809511 |
||||
0.497052 0.31246 0.809511 |
Loading…
Reference in new issue