parent
bb3048d524
commit
80eb045bf6
6 changed files with 985 additions and 0 deletions
@ -0,0 +1,10 @@ |
||||
@article{Allegretti2019, |
||||
title={Optimized block-based algorithms to label connected components on GPUs}, |
||||
author={Allegretti, Stefano and Bolelli, Federico and Grana, Costantino}, |
||||
journal={IEEE Transactions on Parallel and Distributed Systems}, |
||||
volume={31}, |
||||
number={2}, |
||||
pages={423--438}, |
||||
year={2019}, |
||||
publisher={IEEE} |
||||
} |
@ -0,0 +1,58 @@ |
||||
#include <iostream> |
||||
|
||||
#include <opencv2/core/utility.hpp> |
||||
#include "opencv2/imgproc.hpp" |
||||
#include "opencv2/imgcodecs.hpp" |
||||
#include "opencv2/highgui.hpp" |
||||
#include "opencv2/cudaimgproc.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
using namespace cv::cuda; |
||||
|
||||
|
||||
void colorLabels(const Mat1i& labels, Mat3b& colors) { |
||||
colors.create(labels.size()); |
||||
for (int r = 0; r < labels.rows; ++r) { |
||||
int const* labels_row = labels.ptr<int>(r); |
||||
Vec3b* colors_row = colors.ptr<Vec3b>(r); |
||||
for (int c = 0; c < labels.cols; ++c) { |
||||
colors_row[c] = Vec3b(labels_row[c] * 131 % 255, labels_row[c] * 241 % 255, labels_row[c] * 251 % 255); |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
int main(int argc, const char** argv) |
||||
{ |
||||
CommandLineParser parser(argc, argv, "{@image|stuff.jpg|image for converting to a grayscale}"); |
||||
parser.about("This program finds connected components in a binary image and assign each of them a different color.\n" |
||||
"The connected components labeling is performed in GPU.\n"); |
||||
parser.printMessage(); |
||||
|
||||
String inputImage = parser.get<string>(0); |
||||
Mat1b img = imread(samples::findFile(inputImage), IMREAD_GRAYSCALE); |
||||
Mat1i labels; |
||||
|
||||
if (img.empty()) |
||||
{ |
||||
cout << "Could not read input image file: " << inputImage << endl; |
||||
return EXIT_FAILURE; |
||||
} |
||||
|
||||
|
||||
GpuMat d_img, d_labels; |
||||
d_img.upload(img); |
||||
|
||||
cuda::connectedComponents(d_img, d_labels, 8, CV_32S); |
||||
|
||||
d_labels.download(labels); |
||||
|
||||
Mat3b colors; |
||||
colorLabels(labels, colors); |
||||
|
||||
imshow("Labels", colors); |
||||
waitKey(0); |
||||
|
||||
return EXIT_SUCCESS; |
||||
} |
@ -0,0 +1,49 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace cv::cuda; |
||||
|
||||
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) |
||||
|
||||
void cv::cuda::connectedComponents(InputArray img_, OutputArray labels_, int connectivity, |
||||
int ltype, ConnectedComponentsAlgorithmsTypes ccltype) { throw_no_cuda(); } |
||||
|
||||
#else /* !defined (HAVE_CUDA) */ |
||||
|
||||
namespace cv { namespace cuda { namespace device { namespace imgproc { |
||||
void BlockBasedKomuraEquivalence(const cv::cuda::GpuMat& img, cv::cuda::GpuMat& labels); |
||||
}}}} |
||||
|
||||
|
||||
void cv::cuda::connectedComponents(InputArray img_, OutputArray labels_, int connectivity, |
||||
int ltype, ConnectedComponentsAlgorithmsTypes ccltype) { |
||||
const cv::cuda::GpuMat img = img_.getGpuMat(); |
||||
cv::cuda::GpuMat& labels = labels_.getGpuMatRef(); |
||||
|
||||
CV_Assert(img.channels() == 1); |
||||
CV_Assert(connectivity == 8); |
||||
CV_Assert(ltype == CV_32S); |
||||
CV_Assert(ccltype == CCL_BKE || ccltype == CCL_DEFAULT); |
||||
|
||||
int iDepth = img_.depth(); |
||||
CV_Assert(iDepth == CV_8U || iDepth == CV_8S); |
||||
|
||||
labels.create(img.size(), CV_MAT_DEPTH(ltype)); |
||||
|
||||
if ((ccltype == CCL_BKE || ccltype == CCL_DEFAULT) && connectivity == 8 && ltype == CV_32S) { |
||||
using cv::cuda::device::imgproc::BlockBasedKomuraEquivalence; |
||||
BlockBasedKomuraEquivalence(img, labels); |
||||
} |
||||
|
||||
} |
||||
|
||||
void cv::cuda::connectedComponents(InputArray img_, OutputArray labels_, int connectivity, int ltype) { |
||||
cv::cuda::connectedComponents(img_, labels_, connectivity, ltype, CCL_DEFAULT); |
||||
} |
||||
|
||||
|
||||
#endif /* !defined (HAVE_CUDA) */ |
@ -0,0 +1,345 @@ |
||||
// This file is part of OpenCV project. |
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory |
||||
// of this distribution and at http://opencv.org/license.html. |
||||
|
||||
#if !defined CUDA_DISABLER |
||||
|
||||
#include "opencv2/core/cuda/common.hpp" |
||||
#include "opencv2/core/cuda/emulation.hpp" |
||||
#include "opencv2/core/cuda/transform.hpp" |
||||
#include "opencv2/core/cuda/functional.hpp" |
||||
#include "opencv2/core/cuda/utility.hpp" |
||||
#include "opencv2/core/cuda.hpp" |
||||
|
||||
using namespace cv::cuda; |
||||
using namespace cv::cuda::device; |
||||
|
||||
|
||||
namespace cv { namespace cuda { namespace device { namespace imgproc { |
||||
|
||||
constexpr int kblock_rows = 16; |
||||
constexpr int kblock_cols = 16; |
||||
|
||||
namespace { |
||||
enum class Info : unsigned char { a = 0, b = 1, c = 2, d = 3, P = 4, Q = 5, R = 6, S = 7 }; |
||||
|
||||
// Only use it with unsigned numeric types |
||||
template <typename T> |
||||
__device__ __forceinline__ unsigned char HasBit(T bitmap, Info pos) { |
||||
return (bitmap >> static_cast<unsigned char>(pos)) & 1; |
||||
} |
||||
|
||||
template <typename T> |
||||
__device__ __forceinline__ unsigned char HasBit(T bitmap, unsigned char pos) { |
||||
return (bitmap >> pos) & 1; |
||||
} |
||||
|
||||
// Only use it with unsigned numeric types |
||||
__device__ __forceinline__ void SetBit(unsigned char& bitmap, Info pos) { |
||||
bitmap |= (1 << static_cast<unsigned char>(pos)); |
||||
} |
||||
|
||||
// Returns the root index of the UFTree |
||||
__device__ unsigned Find(const int* s_buf, unsigned n) { |
||||
while (s_buf[n] != n) { |
||||
n = s_buf[n]; |
||||
} |
||||
return n; |
||||
} |
||||
|
||||
__device__ unsigned FindAndCompress(int* s_buf, unsigned n) { |
||||
unsigned id = n; |
||||
while (s_buf[n] != n) { |
||||
n = s_buf[n]; |
||||
s_buf[id] = n; |
||||
} |
||||
return n; |
||||
} |
||||
|
||||
// Merges the UFTrees of a and b, linking one root to the other |
||||
__device__ void Union(int* s_buf, unsigned a, unsigned b) { |
||||
|
||||
bool done; |
||||
|
||||
do { |
||||
|
||||
a = Find(s_buf, a); |
||||
b = Find(s_buf, b); |
||||
|
||||
if (a < b) { |
||||
int old = atomicMin(s_buf + b, a); |
||||
done = (old == b); |
||||
b = old; |
||||
} |
||||
else if (b < a) { |
||||
int old = atomicMin(s_buf + a, b); |
||||
done = (old == a); |
||||
a = old; |
||||
} |
||||
else { |
||||
done = true; |
||||
} |
||||
|
||||
} while (!done); |
||||
|
||||
} |
||||
|
||||
|
||||
__global__ void InitLabeling(const cuda::PtrStepSzb img, cuda::PtrStepSzi labels, unsigned char* last_pixel) { |
||||
unsigned row = (blockIdx.y * kblock_rows + threadIdx.y) * 2; |
||||
unsigned col = (blockIdx.x * kblock_cols + threadIdx.x) * 2; |
||||
unsigned img_index = row * img.step + col; |
||||
unsigned labels_index = row * (labels.step / labels.elem_size) + col; |
||||
|
||||
if (row < labels.rows && col < labels.cols) { |
||||
|
||||
unsigned P = 0; |
||||
|
||||
// Bitmask representing two kinds of information |
||||
// Bits 0, 1, 2, 3 are set if pixel a, b, c, d are foreground, respectively |
||||
// Bits 4, 5, 6, 7 are set if block P, Q, R, S need to be merged to X in Merge phase |
||||
unsigned char info = 0; |
||||
|
||||
char buffer alignas(int)[4]; |
||||
*(reinterpret_cast<int*>(buffer)) = 0; |
||||
|
||||
// Read pairs of consecutive values in memory at once |
||||
if (col + 1 < img.cols) { |
||||
// This does not depend on endianness |
||||
*(reinterpret_cast<int16_t*>(buffer)) = *(reinterpret_cast<int16_t*>(img.data + img_index)); |
||||
|
||||
if (row + 1 < img.rows) { |
||||
*(reinterpret_cast<int16_t*>(buffer + 2)) = *(reinterpret_cast<int16_t*>(img.data + img_index + img.step)); |
||||
} |
||||
} |
||||
else { |
||||
buffer[0] = img.data[img_index]; |
||||
|
||||
if (row + 1 < img.rows) { |
||||
buffer[2] = img.data[img_index + img.step]; |
||||
} |
||||
} |
||||
|
||||
if (buffer[0]) { |
||||
P |= 0x777; |
||||
SetBit(info, Info::a); |
||||
} |
||||
if (buffer[1]) { |
||||
P |= (0x777 << 1); |
||||
SetBit(info, Info::b); |
||||
} |
||||
if (buffer[2]) { |
||||
P |= (0x777 << 4); |
||||
SetBit(info, Info::c); |
||||
} |
||||
if (buffer[3]) { |
||||
SetBit(info, Info::d); |
||||
} |
||||
|
||||
if (col == 0) { |
||||
P &= 0xEEEE; |
||||
} |
||||
if (col + 1 >= img.cols) { |
||||
P &= 0x3333; |
||||
} |
||||
else if (col + 2 >= img.cols) { |
||||
P &= 0x7777; |
||||
} |
||||
|
||||
if (row == 0) { |
||||
P &= 0xFFF0; |
||||
} |
||||
if (row + 1 >= img.rows) { |
||||
P &= 0x00FF; |
||||
} |
||||
else if (row + 2 >= img.rows) { |
||||
P &= 0x0FFF; |
||||
} |
||||
|
||||
// P is now ready to be used to find neighbor blocks |
||||
// P value avoids range errors |
||||
|
||||
int father_offset = 0; |
||||
|
||||
// P square |
||||
if (HasBit(P, 0) && img.data[img_index - img.step - 1]) { |
||||
father_offset = -(2 * (labels.step / labels.elem_size) + 2); |
||||
} |
||||
|
||||
// Q square |
||||
if ((HasBit(P, 1) && img.data[img_index - img.step]) || (HasBit(P, 2) && img.data[img_index + 1 - img.step])) { |
||||
if (!father_offset) { |
||||
father_offset = -(2 * (labels.step / labels.elem_size)); |
||||
} |
||||
else { |
||||
SetBit(info, Info::Q); |
||||
} |
||||
} |
||||
|
||||
// R square |
||||
if (HasBit(P, 3) && img.data[img_index + 2 - img.step]) { |
||||
if (!father_offset) { |
||||
father_offset = -(2 * (labels.step / labels.elem_size) - 2); |
||||
} |
||||
else { |
||||
SetBit(info, Info::R); |
||||
} |
||||
} |
||||
|
||||
// S square |
||||
if ((HasBit(P, 4) && img.data[img_index - 1]) || (HasBit(P, 8) && img.data[img_index + img.step - 1])) { |
||||
if (!father_offset) { |
||||
father_offset = -2; |
||||
} |
||||
else { |
||||
SetBit(info, Info::S); |
||||
} |
||||
} |
||||
|
||||
labels.data[labels_index] = labels_index + father_offset; |
||||
if (col + 1 < labels.cols) { |
||||
last_pixel = reinterpret_cast<unsigned char*>(labels.data + labels_index + 1); |
||||
} |
||||
else if (row + 1 < labels.rows) { |
||||
last_pixel = reinterpret_cast<unsigned char*>(labels.data + labels_index + labels.step / labels.elem_size); |
||||
} |
||||
*last_pixel = info; |
||||
} |
||||
} |
||||
|
||||
__global__ void Merge(cuda::PtrStepSzi labels, unsigned char* last_pixel) { |
||||
|
||||
unsigned row = (blockIdx.y * kblock_rows + threadIdx.y) * 2; |
||||
unsigned col = (blockIdx.x * kblock_cols + threadIdx.x) * 2; |
||||
unsigned labels_index = row * (labels.step / labels.elem_size) + col; |
||||
|
||||
if (row < labels.rows && col < labels.cols) { |
||||
|
||||
if (col + 1 < labels.cols) { |
||||
last_pixel = reinterpret_cast<unsigned char*>(labels.data + labels_index + 1); |
||||
} |
||||
else if (row + 1 < labels.rows) { |
||||
last_pixel = reinterpret_cast<unsigned char*>(labels.data + labels_index + labels.step / labels.elem_size); |
||||
} |
||||
unsigned char info = *last_pixel; |
||||
|
||||
if (HasBit(info, Info::Q)) { |
||||
Union(labels.data, labels_index, labels_index - 2 * (labels.step / labels.elem_size)); |
||||
} |
||||
if (HasBit(info, Info::R)) { |
||||
Union(labels.data, labels_index, labels_index - 2 * (labels.step / labels.elem_size) + 2); |
||||
} |
||||
if (HasBit(info, Info::S)) { |
||||
Union(labels.data, labels_index, labels_index - 2); |
||||
} |
||||
} |
||||
} |
||||
|
||||
__global__ void Compression(cuda::PtrStepSzi labels) { |
||||
unsigned row = (blockIdx.y * kblock_rows + threadIdx.y) * 2; |
||||
unsigned col = (blockIdx.x * kblock_cols + threadIdx.x) * 2; |
||||
unsigned labels_index = row * (labels.step / labels.elem_size) + col; |
||||
|
||||
if (row < labels.rows && col < labels.cols) { |
||||
FindAndCompress(labels.data, labels_index); |
||||
} |
||||
} |
||||
|
||||
__global__ void FinalLabeling(const cuda::PtrStepSzb img, cuda::PtrStepSzi labels) { |
||||
|
||||
unsigned row = (blockIdx.y * kblock_rows + threadIdx.y) * 2; |
||||
unsigned col = (blockIdx.x * kblock_cols + threadIdx.x) * 2; |
||||
unsigned labels_index = row * (labels.step / labels.elem_size) + col; |
||||
|
||||
if (row < labels.rows && col < labels.cols) { |
||||
|
||||
int label; |
||||
unsigned char info; |
||||
unsigned long long buffer; |
||||
|
||||
if (col + 1 < labels.cols) { |
||||
buffer = *reinterpret_cast<unsigned long long*>(labels.data + labels_index); |
||||
label = (buffer & (0xFFFFFFFF)) + 1; |
||||
info = (buffer >> 32) & 0xFFFFFFFF; |
||||
} |
||||
else { |
||||
label = labels[labels_index] + 1; |
||||
if (row + 1 < labels.rows) { |
||||
info = labels[labels_index + labels.step / labels.elem_size]; |
||||
} |
||||
else { |
||||
// Read from the input image |
||||
// "a" is already in position 0 |
||||
info = img[row * img.step + col]; |
||||
} |
||||
} |
||||
|
||||
if (col + 1 < labels.cols) { |
||||
*reinterpret_cast<unsigned long long*>(labels.data + labels_index) = |
||||
(static_cast<unsigned long long>(HasBit(info, Info::b) * label) << 32) | (HasBit(info, Info::a) * label); |
||||
|
||||
if (row + 1 < labels.rows) { |
||||
*reinterpret_cast<unsigned long long*>(labels.data + labels_index + labels.step / labels.elem_size) = |
||||
(static_cast<unsigned long long>(HasBit(info, Info::d) * label) << 32) | (HasBit(info, Info::c) * label); |
||||
} |
||||
} |
||||
else { |
||||
labels[labels_index] = HasBit(info, Info::a) * label; |
||||
|
||||
if (row + 1 < labels.rows) { |
||||
labels[labels_index + (labels.step / labels.elem_size)] = HasBit(info, Info::c) * label; |
||||
} |
||||
} |
||||
|
||||
} |
||||
|
||||
} |
||||
|
||||
} |
||||
|
||||
|
||||
void BlockBasedKomuraEquivalence(const cv::cuda::GpuMat& img, cv::cuda::GpuMat& labels) { |
||||
|
||||
dim3 grid_size; |
||||
dim3 block_size; |
||||
unsigned char* last_pixel; |
||||
bool last_pixel_allocated; |
||||
|
||||
last_pixel_allocated = false; |
||||
if ((img.rows == 1 || img.cols == 1) && !((img.rows + img.cols) % 2)) { |
||||
cudaSafeCall(cudaMalloc(&last_pixel, sizeof(unsigned char))); |
||||
last_pixel_allocated = true; |
||||
} |
||||
else { |
||||
last_pixel = labels.data + ((labels.rows - 2) * labels.step) + (labels.cols - 2) * labels.elemSize(); |
||||
} |
||||
|
||||
grid_size = dim3((((img.cols + 1) / 2) - 1) / kblock_cols + 1, (((img.rows + 1) / 2) - 1) / kblock_rows + 1, 1); |
||||
block_size = dim3(kblock_cols, kblock_rows, 1); |
||||
|
||||
InitLabeling << <grid_size, block_size >> > (img, labels, last_pixel); |
||||
cudaSafeCall(cudaGetLastError()); |
||||
|
||||
Compression << <grid_size, block_size >> > (labels); |
||||
cudaSafeCall(cudaGetLastError()); |
||||
|
||||
Merge << <grid_size, block_size >> > (labels, last_pixel); |
||||
cudaSafeCall(cudaGetLastError()); |
||||
|
||||
Compression << <grid_size, block_size >> > (labels); |
||||
cudaSafeCall(cudaGetLastError()); |
||||
|
||||
FinalLabeling << <grid_size, block_size >> > (img, labels); |
||||
cudaSafeCall(cudaGetLastError()); |
||||
|
||||
if (last_pixel_allocated) { |
||||
cudaSafeCall(cudaFree(last_pixel)); |
||||
} |
||||
cudaSafeCall(cudaDeviceSynchronize()); |
||||
|
||||
} |
||||
|
||||
}}}} |
||||
|
||||
|
||||
#endif /* CUDA_DISABLER */ |
@ -0,0 +1,479 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
namespace opencv_test { |
||||
namespace { |
||||
|
||||
// This function force a row major order for the labels
|
||||
template <typename LabelT> |
||||
void normalize_labels_impl(Mat& labels) { |
||||
std::map<LabelT, LabelT> map_new_labels; |
||||
LabelT i_max_new_label = 0; |
||||
|
||||
for (int r = 0; r < labels.rows; ++r) { |
||||
LabelT* const mat_row = labels.ptr<LabelT>(r); |
||||
for (int c = 0; c < labels.cols; ++c) { |
||||
LabelT iCurLabel = mat_row[c]; |
||||
if (iCurLabel > 0) { |
||||
if (map_new_labels.find(iCurLabel) == map_new_labels.end()) { |
||||
map_new_labels[iCurLabel] = ++i_max_new_label; |
||||
} |
||||
mat_row[c] = map_new_labels.at(iCurLabel); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
void normalize_labels(Mat& labels) { |
||||
|
||||
int type = labels.type(); |
||||
int depth = type & CV_MAT_DEPTH_MASK; |
||||
int chans = 1 + (type >> CV_CN_SHIFT); |
||||
|
||||
CV_Assert(chans == 1); |
||||
CV_Assert(depth == CV_16U || depth == CV_16S || depth == CV_32S); |
||||
|
||||
switch (depth) { |
||||
case CV_16U: normalize_labels_impl<ushort>(labels); break; |
||||
case CV_16S: normalize_labels_impl<short>(labels); break; |
||||
case CV_32S: normalize_labels_impl<int>(labels); break; |
||||
default: CV_Assert(0); |
||||
} |
||||
} |
||||
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// ConnectedComponents
|
||||
|
||||
PARAM_TEST_CASE(ConnectedComponents, cv::cuda::DeviceInfo, int, int, cv::cuda::ConnectedComponentsAlgorithmsTypes) |
||||
{ |
||||
cv::cuda::DeviceInfo devInfo; |
||||
int connectivity; |
||||
int ltype; |
||||
cv::cuda::ConnectedComponentsAlgorithmsTypes algo; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
connectivity = GET_PARAM(1); |
||||
ltype = GET_PARAM(2); |
||||
algo = GET_PARAM(3); |
||||
|
||||
cv::cuda::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
CUDA_TEST_P(ConnectedComponents, Chessboard_Even) |
||||
{ |
||||
std::initializer_list<int> sizes{ 16, 16 }; |
||||
cv::Mat1b input; |
||||
cv::Mat1i correct_output_int; |
||||
cv::Mat correct_output; |
||||
|
||||
// Chessboard image with even number of rows and cols
|
||||
// Note that this is the maximum number of labels for 4-way connectivity
|
||||
{ |
||||
input = cv::Mat1b(sizes, { |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 |
||||
}); |
||||
|
||||
if (connectivity == 8) { |
||||
correct_output_int = cv::Mat1i(sizes, { |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 |
||||
}); |
||||
} |
||||
else { |
||||
correct_output_int = cv::Mat1i(sizes, { |
||||
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, |
||||
0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16, |
||||
17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, 0, |
||||
0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32, |
||||
33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, 0, |
||||
0, 41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48, |
||||
49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56, 0, |
||||
0, 57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64, |
||||
65, 0, 66, 0, 67, 0, 68, 0, 69, 0, 70, 0, 71, 0, 72, 0, |
||||
0, 73, 0, 74, 0, 75, 0, 76, 0, 77, 0, 78, 0, 79, 0, 80, |
||||
81, 0, 82, 0, 83, 0, 84, 0, 85, 0, 86, 0, 87, 0, 88, 0, |
||||
0, 89, 0, 90, 0, 91, 0, 92, 0, 93, 0, 94, 0, 95, 0, 96, |
||||
97, 0, 98, 0, 99, 0, 100, 0, 101, 0, 102, 0, 103, 0, 104, 0, |
||||
0, 105, 0, 106, 0, 107, 0, 108, 0, 109, 0, 110, 0, 111, 0, 112, |
||||
113, 0, 114, 0, 115, 0, 116, 0, 117, 0, 118, 0, 119, 0, 120, 0, |
||||
0, 121, 0, 122, 0, 123, 0, 124, 0, 125, 0, 126, 0, 127, 0, 128 |
||||
}); |
||||
} |
||||
} |
||||
|
||||
correct_output_int.convertTo(correct_output, CV_MAT_DEPTH(ltype)); |
||||
|
||||
cv::Mat labels; |
||||
cv::Mat diff; |
||||
|
||||
cv::cuda::GpuMat d_input; |
||||
cv::cuda::GpuMat d_labels; |
||||
d_input.upload(input); |
||||
EXPECT_NO_THROW(cv::cuda::connectedComponents(d_input, d_labels, connectivity, ltype, algo)); |
||||
d_labels.download(labels); |
||||
normalize_labels(labels); |
||||
|
||||
diff = labels != correct_output; |
||||
EXPECT_EQ(cv::countNonZero(diff), 0); |
||||
|
||||
} |
||||
|
||||
CUDA_TEST_P(ConnectedComponents, Chessboard_Odd) |
||||
{ |
||||
std::initializer_list<int> sizes{ 15, 15 }; |
||||
cv::Mat1b input; |
||||
cv::Mat1i correct_output_int; |
||||
cv::Mat correct_output; |
||||
|
||||
// Chessboard image with even number of rows and cols
|
||||
// Note that this is the maximum number of labels for 4-way connectivity
|
||||
{ |
||||
input = Mat1b(sizes, { |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 |
||||
}); |
||||
|
||||
if (connectivity == 8) { |
||||
correct_output_int = Mat1i(sizes, { |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 |
||||
}); |
||||
} |
||||
else { |
||||
correct_output_int = Mat1i(sizes, { |
||||
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, |
||||
0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, |
||||
16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, |
||||
0, 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, |
||||
31, 0, 32, 0, 33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, |
||||
0, 39, 0, 40, 0, 41, 0, 42, 0, 43, 0, 44, 0, 45, 0, |
||||
46, 0, 47, 0, 48, 0, 49, 0, 50, 0, 51, 0, 52, 0, 53, |
||||
0, 54, 0, 55, 0, 56, 0, 57, 0, 58, 0, 59, 0, 60, 0, |
||||
61, 0, 62, 0, 63, 0, 64, 0, 65, 0, 66, 0, 67, 0, 68, |
||||
0, 69, 0, 70, 0, 71, 0, 72, 0, 73, 0, 74, 0, 75, 0, |
||||
76, 0, 77, 0, 78, 0, 79, 0, 80, 0, 81, 0, 82, 0, 83, |
||||
0, 84, 0, 85, 0, 86, 0, 87, 0, 88, 0, 89, 0, 90, 0, |
||||
91, 0, 92, 0, 93, 0, 94, 0, 95, 0, 96, 0, 97, 0, 98, |
||||
0, 99, 0, 100, 0, 101, 0, 102, 0, 103, 0, 104, 0, 105, 0, |
||||
106, 0, 107, 0, 108, 0, 109, 0, 110, 0, 111, 0, 112, 0, 113 |
||||
}); |
||||
} |
||||
} |
||||
|
||||
correct_output_int.convertTo(correct_output, CV_MAT_DEPTH(ltype)); |
||||
|
||||
cv::Mat labels; |
||||
cv::Mat diff; |
||||
|
||||
cv::cuda::GpuMat d_input; |
||||
cv::cuda::GpuMat d_labels; |
||||
d_input.upload(input); |
||||
EXPECT_NO_THROW(cv::cuda::connectedComponents(d_input, d_labels, connectivity, ltype, algo)); |
||||
d_labels.download(labels); |
||||
normalize_labels(labels); |
||||
|
||||
diff = labels != correct_output; |
||||
EXPECT_EQ(cv::countNonZero(diff), 0); |
||||
|
||||
} |
||||
|
||||
CUDA_TEST_P(ConnectedComponents, Maxlabels_8conn_Even) |
||||
{ |
||||
std::initializer_list<int> sizes{ 16, 16 }; |
||||
cv::Mat1b input; |
||||
cv::Mat1i correct_output_int; |
||||
cv::Mat correct_output; |
||||
|
||||
// Chessboard image with even number of rows and cols
|
||||
// Note that this is the maximum number of labels for 4-way connectivity
|
||||
{ |
||||
input = Mat1b(sizes, { |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 |
||||
}); |
||||
|
||||
correct_output_int = Mat1i(sizes, { |
||||
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16, 0, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, 0, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32, 0, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, 0, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48, 0, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56, 0, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64, 0, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 |
||||
}); |
||||
|
||||
} |
||||
|
||||
correct_output_int.convertTo(correct_output, CV_MAT_DEPTH(ltype)); |
||||
|
||||
cv::Mat labels; |
||||
cv::Mat diff; |
||||
|
||||
cv::cuda::GpuMat d_input; |
||||
cv::cuda::GpuMat d_labels; |
||||
d_input.upload(input); |
||||
EXPECT_NO_THROW(cv::cuda::connectedComponents(d_input, d_labels, connectivity, ltype, algo)); |
||||
d_labels.download(labels); |
||||
normalize_labels(labels); |
||||
|
||||
diff = labels != correct_output; |
||||
EXPECT_EQ(cv::countNonZero(diff), 0); |
||||
|
||||
} |
||||
|
||||
CUDA_TEST_P(ConnectedComponents, Maxlabels_8conn_Odd) |
||||
{ |
||||
std::initializer_list<int> sizes{ 15, 15 }; |
||||
cv::Mat1b input; |
||||
cv::Mat1i correct_output_int; |
||||
cv::Mat correct_output; |
||||
|
||||
// Chessboard image with even number of rows and cols
|
||||
// Note that this is the maximum number of labels for 4-way connectivity
|
||||
{ |
||||
input = Mat1b(sizes, { |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 |
||||
}); |
||||
|
||||
correct_output_int = Mat1i(sizes, { |
||||
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56, |
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
||||
57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64 |
||||
}); |
||||
|
||||
} |
||||
|
||||
correct_output_int.convertTo(correct_output, CV_MAT_DEPTH(ltype)); |
||||
|
||||
cv::Mat labels; |
||||
cv::Mat diff; |
||||
|
||||
cv::cuda::GpuMat d_input; |
||||
cv::cuda::GpuMat d_labels; |
||||
d_input.upload(input); |
||||
EXPECT_NO_THROW(cv::cuda::connectedComponents(d_input, d_labels, connectivity, ltype, algo)); |
||||
d_labels.download(labels); |
||||
normalize_labels(labels); |
||||
|
||||
diff = labels != correct_output; |
||||
EXPECT_EQ(cv::countNonZero(diff), 0); |
||||
|
||||
} |
||||
|
||||
CUDA_TEST_P(ConnectedComponents, Single_Row) |
||||
{ |
||||
std::initializer_list<int> sizes{ 1, 15 }; |
||||
cv::Mat1b input; |
||||
cv::Mat1i correct_output_int; |
||||
cv::Mat correct_output; |
||||
|
||||
// Chessboard image with even number of rows and cols
|
||||
// Note that this is the maximum number of labels for 4-way connectivity
|
||||
{ |
||||
input = Mat1b(sizes, { 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 }); |
||||
correct_output_int = Mat1i(sizes, { 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8 }); |
||||
} |
||||
|
||||
correct_output_int.convertTo(correct_output, CV_MAT_DEPTH(ltype)); |
||||
|
||||
cv::Mat labels; |
||||
cv::Mat diff; |
||||
|
||||
cv::cuda::GpuMat d_input; |
||||
cv::cuda::GpuMat d_labels; |
||||
d_input.upload(input); |
||||
EXPECT_NO_THROW(cv::cuda::connectedComponents(d_input, d_labels, connectivity, ltype, algo)); |
||||
d_labels.download(labels); |
||||
normalize_labels(labels); |
||||
|
||||
diff = labels != correct_output; |
||||
EXPECT_EQ(cv::countNonZero(diff), 0); |
||||
|
||||
} |
||||
|
||||
CUDA_TEST_P(ConnectedComponents, Single_Column) |
||||
{ |
||||
std::initializer_list<int> sizes{ 15, 1 }; |
||||
cv::Mat1b input; |
||||
cv::Mat1i correct_output_int; |
||||
cv::Mat correct_output; |
||||
|
||||
// Chessboard image with even number of rows and cols
|
||||
// Note that this is the maximum number of labels for 4-way connectivity
|
||||
{ |
||||
input = Mat1b(sizes, { 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 }); |
||||
correct_output_int = Mat1i(sizes, { 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8 }); |
||||
} |
||||
|
||||
correct_output_int.convertTo(correct_output, CV_MAT_DEPTH(ltype)); |
||||
|
||||
cv::Mat labels; |
||||
cv::Mat diff; |
||||
|
||||
cv::cuda::GpuMat d_input; |
||||
cv::cuda::GpuMat d_labels; |
||||
d_input.upload(input); |
||||
EXPECT_NO_THROW(cv::cuda::connectedComponents(d_input, d_labels, connectivity, ltype, algo)); |
||||
d_labels.download(labels); |
||||
normalize_labels(labels); |
||||
|
||||
diff = labels != correct_output; |
||||
EXPECT_EQ(cv::countNonZero(diff), 0); |
||||
|
||||
} |
||||
|
||||
|
||||
CUDA_TEST_P(ConnectedComponents, Concentric_Circles) |
||||
{ |
||||
string img_path = cvtest::TS::ptr()->get_data_path() + "connectedcomponents/concentric_circles.png"; |
||||
string exp_path = cvtest::TS::ptr()->get_data_path() + "connectedcomponents/ccomp_exp.png"; |
||||
|
||||
Mat img = imread(img_path, 0); |
||||
EXPECT_FALSE(img.empty()); |
||||
|
||||
Mat exp = imread(exp_path, 0); |
||||
EXPECT_FALSE(exp.empty()); |
||||
|
||||
Mat labels; |
||||
exp.convertTo(exp, ltype); |
||||
|
||||
GpuMat d_img; |
||||
GpuMat d_labels; |
||||
d_img.upload(img); |
||||
|
||||
EXPECT_NO_THROW(cv::cuda::connectedComponents(d_img, d_labels, connectivity, ltype, algo)); |
||||
|
||||
d_labels.download(labels); |
||||
|
||||
normalize_labels(labels); |
||||
|
||||
Mat diff = labels != exp; |
||||
EXPECT_EQ(cv::countNonZero(diff), 0); |
||||
|
||||
} |
||||
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, ConnectedComponents, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(8), |
||||
testing::Values(CV_32S), |
||||
testing::Values(cv::cuda::CCL_DEFAULT, cv::cuda::CCL_BKE) |
||||
)); |
||||
|
||||
|
||||
} |
||||
} // namespace
|
||||
#endif // HAVE_CUDA
|
Loading…
Reference in new issue