Add AGAST detector

pull/162/head
cbalint13 10 years ago
parent c6ea683b86
commit 7c703bc52d
  1. 22
      modules/xfeatures2d/doc/extra_features.rst
  2. 9
      modules/xfeatures2d/doc/xfeatures2d.bib
  3. 32
      modules/xfeatures2d/include/opencv2/xfeatures2d.hpp
  4. 41
      modules/xfeatures2d/perf/perf_agast.cpp
  5. 7670
      modules/xfeatures2d/src/agast.cpp
  6. 9378
      modules/xfeatures2d/src/agast_score.cpp
  7. 65
      modules/xfeatures2d/src/agast_score.hpp
  8. 138
      modules/xfeatures2d/test/test_agast.cpp

@ -91,3 +91,25 @@ We notice that for keypoint matching applications, image content has little effe
:param keypoints: Set of detected keypoints
:param corrThresh: Correlation threshold.
:param verbose: Prints pair selection informations.
AGAST
-----
Detects corners using the AGAST algorithm
.. ocv:function:: void AGAST( InputArray image, vector<KeyPoint>& keypoints, int threshold, bool nonmaxSuppression=true )
.. ocv:function:: void AGAST( InputArray image, vector<KeyPoint>& keypoints, int threshold, bool nonmaxSuppression, int type )
:param image: grayscale image where keypoints (corners) are detected.
:param keypoints: keypoints detected on the image.
:param threshold: threshold on difference between intensity of the central pixel and pixels of a circle around this pixel.
:param nonmaxSuppression: if true, non-maximum suppression is applied to detected corners (keypoints).
:param type: one of the three neighborhoods as defined in the paper: ``AgastFeatureDetector::OAST_9_16``, ``AgastFeatureDetector::AGAST_7_12d``, ``AgastFeatureDetector::AGAST_7_12s``, ``AgastFeatureDetector::AGAST_5_8``
Detects corners using the AGAST algorithm by [Mair2010]_.
.. [Mair2010] Elmar Mair and Gregory D. Hager and Darius Burschka and Michael Suppa and Gerhard Hirzinger, Adaptive and Generic Corner Detection Based on the Accelerated Segment Test, ECCV2010

@ -44,3 +44,12 @@
year={2012},
organization={Ieee}
}
@inproceedings{mair2010_agast,
title={Adaptive and Generic Corner Detection Based on the Accelerated Segment Test"},
author={"Elmar Mair and Gregory D. Hager and Darius Burschka and Michael Suppa and Gerhard Hirzinger"},
year={"2010"},
month={"September"},
booktitle={"European Conference on Computer Vision (ECCV'10)"},
url={"http://www6.in.tum.de/Main/ResearchAgast"}
}

@ -128,7 +128,37 @@ class CV_EXPORTS BriefDescriptorExtractor : public DescriptorExtractor
public:
static Ptr<BriefDescriptorExtractor> create( int bytes = 32 );
};
//! detects corners using AGAST algorithm by Elmar Mair
CV_EXPORTS void AGAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
int threshold, bool nonmaxSuppression=true );
CV_EXPORTS void AGAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
int threshold, bool nonmaxSuppression, int type );
class CV_EXPORTS_W AgastFeatureDetector : public Feature2D
{
public:
enum
{
AGAST_5_8 = 0, AGAST_7_12d = 1, AGAST_7_12s = 2, OAST_9_16 = 3,
THRESHOLD = 10000, NONMAX_SUPPRESSION=10001,
};
CV_WRAP static Ptr<AgastFeatureDetector> create( int threshold=10,
bool nonmaxSuppression=true,
int type=AgastFeatureDetector::OAST_9_16 );
CV_WRAP virtual void setThreshold(int threshold) = 0;
CV_WRAP virtual int getThreshold() const = 0;
CV_WRAP virtual void setNonmaxSuppression(bool f) = 0;
CV_WRAP virtual bool getNonmaxSuppression() const = 0;
CV_WRAP virtual void setType(int type) = 0;
CV_WRAP virtual int getType() const = 0;
};
//! @}
}

@ -0,0 +1,41 @@
#include "perf_precomp.hpp"
using namespace std;
using namespace cv;
using namespace cv::xfeatures2d;
using namespace perf;
using std::tr1::make_tuple;
using std::tr1::get;
CV_ENUM(AgastType, AgastFeatureDetector::AGAST_5_8, AgastFeatureDetector::AGAST_7_12d,
AgastFeatureDetector::AGAST_7_12s, AgastFeatureDetector::OAST_9_16)
typedef std::tr1::tuple<string, AgastType> File_Type_t;
typedef perf::TestBaseWithParam<File_Type_t> agast;
#define AGAST_IMAGES \
"cv/detectors_descriptors_evaluation/images_datasets/leuven/img1.png",\
"stitching/a3.png"
PERF_TEST_P(agast, detect, testing::Combine(
testing::Values(AGAST_IMAGES),
AgastType::all()
))
{
string filename = getDataPath(get<0>(GetParam()));
int type = get<1>(GetParam());
Mat frame = imread(filename, IMREAD_GRAYSCALE);
if (frame.empty())
FAIL() << "Unable to load source image " << filename;
declare.in(frame);
Ptr<FeatureDetector> fd = AgastFeatureDetector::create(20, true, type);
ASSERT_FALSE( fd.empty() );
vector<KeyPoint> points;
TEST_CYCLE() fd->detect(frame, points);
SANITY_CHECK_KEYPOINTS(points);
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -0,0 +1,65 @@
/* This is AGAST and OAST, an optimal and accelerated corner detector
based on the accelerated segment tests
Below is the original copyright and the references */
/*
Copyright (C) 2010 Elmar Mair
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
*Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
*Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
*Neither the name of the University of Cambridge nor the names of
its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
The references are:
* Adaptive and Generic Corner Detection Based on the Accelerated Segment Test,
Elmar Mair and Gregory D. Hager and Darius Burschka
and Michael Suppa and Gerhard Hirzinger ECCV 2010
URL: http://www6.in.tum.de/Main/ResearchAgast
*/
#ifndef __OPENCV_FEATURES_2D_AGAST_HPP__
#define __OPENCV_FEATURES_2D_AGAST_HPP__
#ifdef __cplusplus
#include "precomp.hpp"
namespace cv
{
namespace xfeatures2d
{
void makeAgastOffsets(int pixel[16], int row_stride, int type);
template<int type>
int agast_cornerScore(const uchar* ptr, const int pixel[], int threshold);
}
}
#endif
#endif

@ -0,0 +1,138 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
using namespace std;
using namespace cv;
using namespace cv::xfeatures2d;
class CV_AgastTest : public cvtest::BaseTest
{
public:
CV_AgastTest();
~CV_AgastTest();
protected:
void run(int);
};
CV_AgastTest::CV_AgastTest() {}
CV_AgastTest::~CV_AgastTest() {}
void CV_AgastTest::run( int )
{
for(int type=0; type <= 2; ++type) {
Mat image1 = imread(string(ts->get_data_path()) + "inpaint/orig.png");
Mat image2 = imread(string(ts->get_data_path()) + "cameracalibration/chess9.png");
string xml = string(ts->get_data_path()) + format("agast/result%d.xml", type);
if (image1.empty() || image2.empty())
{
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
return;
}
Mat gray1, gray2;
cvtColor(image1, gray1, COLOR_BGR2GRAY);
cvtColor(image2, gray2, COLOR_BGR2GRAY);
vector<KeyPoint> keypoints1;
vector<KeyPoint> keypoints2;
AGAST(gray1, keypoints1, 30, true, type);
AGAST(gray2, keypoints2, (type > 0 ? 30 : 20), true, type);
for(size_t i = 0; i < keypoints1.size(); ++i)
{
const KeyPoint& kp = keypoints1[i];
cv::circle(image1, kp.pt, cvRound(kp.size/2), Scalar(255, 0, 0));
}
for(size_t i = 0; i < keypoints2.size(); ++i)
{
const KeyPoint& kp = keypoints2[i];
cv::circle(image2, kp.pt, cvRound(kp.size/2), Scalar(255, 0, 0));
}
Mat kps1(1, (int)(keypoints1.size() * sizeof(KeyPoint)), CV_8U, &keypoints1[0]);
Mat kps2(1, (int)(keypoints2.size() * sizeof(KeyPoint)), CV_8U, &keypoints2[0]);
FileStorage fs(xml, FileStorage::READ);
if (!fs.isOpened())
{
fs.open(xml, FileStorage::WRITE);
if (!fs.isOpened())
{
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
return;
}
fs << "exp_kps1" << kps1;
fs << "exp_kps2" << kps2;
fs.release();
fs.open(xml, FileStorage::READ);
if (!fs.isOpened())
{
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
return;
}
}
Mat exp_kps1, exp_kps2;
read( fs["exp_kps1"], exp_kps1, Mat() );
read( fs["exp_kps2"], exp_kps2, Mat() );
fs.release();
if ( exp_kps1.size != kps1.size || 0 != cvtest::norm(exp_kps1, kps1, NORM_L2) ||
exp_kps2.size != kps2.size || 0 != cvtest::norm(exp_kps2, kps2, NORM_L2))
{
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
return;
}
/*cv::namedWindow("Img1"); cv::imshow("Img1", image1);
cv::namedWindow("Img2"); cv::imshow("Img2", image2);
cv::waitKey(0);*/
}
ts->set_failed_test_info(cvtest::TS::OK);
}
TEST(Features2d_AGAST, regression) { CV_AgastTest test; test.safe_run(); }
Loading…
Cancel
Save