parent
1c0cb8b54f
commit
74f48e80e1
5 changed files with 533 additions and 0 deletions
@ -0,0 +1,81 @@ |
|||||||
|
/*
|
||||||
|
* By downloading, copying, installing or using the software you agree to this license. |
||||||
|
* If you do not agree to this license, do not download, install, |
||||||
|
* copy or use the software. |
||||||
|
* |
||||||
|
* |
||||||
|
* License Agreement |
||||||
|
* For Open Source Computer Vision Library |
||||||
|
* (3 - clause BSD License) |
||||||
|
* |
||||||
|
* Redistribution and use in source and binary forms, with or without modification, |
||||||
|
* are permitted provided that the following conditions are met : |
||||||
|
* |
||||||
|
* *Redistributions of source code must retain the above copyright notice, |
||||||
|
* this list of conditions and the following disclaimer. |
||||||
|
* |
||||||
|
* * Redistributions in binary form must reproduce the above copyright notice, |
||||||
|
* this list of conditions and the following disclaimer in the documentation |
||||||
|
* and / or other materials provided with the distribution. |
||||||
|
* |
||||||
|
* * Neither the names of the copyright holders nor the names of the contributors |
||||||
|
* may be used to endorse or promote products derived from this software |
||||||
|
* without specific prior written permission. |
||||||
|
* |
||||||
|
* This software is provided by the copyright holders and contributors "as is" and |
||||||
|
* any express or implied warranties, including, but not limited to, the implied |
||||||
|
* warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||||
|
* In no event shall copyright holders or contributors be liable for any direct, |
||||||
|
* indirect, incidental, special, exemplary, or consequential damages |
||||||
|
* (including, but not limited to, procurement of substitute goods or services; |
||||||
|
* loss of use, data, or profits; or business interruption) however caused |
||||||
|
* and on any theory of liability, whether in contract, strict liability, |
||||||
|
* or tort(including negligence or otherwise) arising in any way out of |
||||||
|
* the use of this software, even if advised of the possibility of such damage. |
||||||
|
*/ |
||||||
|
|
||||||
|
#include "perf_precomp.hpp" |
||||||
|
|
||||||
|
namespace cvtest |
||||||
|
{ |
||||||
|
|
||||||
|
using std::tr1::tuple; |
||||||
|
using std::tr1::get; |
||||||
|
using namespace perf; |
||||||
|
using namespace testing; |
||||||
|
using namespace cv; |
||||||
|
using namespace cv::ximgproc; |
||||||
|
|
||||||
|
typedef tuple<Size, MatType, int> L0SmoothTestParam; |
||||||
|
typedef TestBaseWithParam<L0SmoothTestParam> L0SmoothTest; |
||||||
|
|
||||||
|
PERF_TEST_P(L0SmoothTest, perf, |
||||||
|
Combine( |
||||||
|
SZ_TYPICAL, |
||||||
|
Values(CV_8U, CV_16U, CV_32F, CV_64F), |
||||||
|
Values(1, 3)) |
||||||
|
) |
||||||
|
{ |
||||||
|
L0SmoothTestParam params = GetParam(); |
||||||
|
Size sz = get<0>(params); |
||||||
|
int depth = get<1>(params); |
||||||
|
int srcCn = get<2>(params); |
||||||
|
|
||||||
|
Mat src(sz, CV_MAKE_TYPE(depth, srcCn)); |
||||||
|
Mat dst(sz, src.type()); |
||||||
|
|
||||||
|
cv::setNumThreads(cv::getNumberOfCPUs()); |
||||||
|
declare.in(src, WARMUP_RNG).out(dst).tbb_threads(cv::getNumberOfCPUs()); |
||||||
|
|
||||||
|
RNG rnd(sz.height + depth + srcCn); |
||||||
|
double lambda = rnd.uniform(0.01, 0.05); |
||||||
|
double kappa = rnd.uniform(1.0, 3.0); |
||||||
|
|
||||||
|
TEST_CYCLE_N(1) |
||||||
|
{ |
||||||
|
l0Smooth(src, dst, lambda, kappa); |
||||||
|
} |
||||||
|
|
||||||
|
SANITY_CHECK_NOTHING(); |
||||||
|
} |
||||||
|
} |
@ -0,0 +1,308 @@ |
|||||||
|
/*
|
||||||
|
* By downloading, copying, installing or using the software you agree to this license. |
||||||
|
* If you do not agree to this license, do not download, install, |
||||||
|
* copy or use the software. |
||||||
|
* |
||||||
|
* |
||||||
|
* License Agreement |
||||||
|
* For Open Source Computer Vision Library |
||||||
|
* (3 - clause BSD License) |
||||||
|
* |
||||||
|
* Redistribution and use in source and binary forms, with or without modification, |
||||||
|
* are permitted provided that the following conditions are met : |
||||||
|
* |
||||||
|
* *Redistributions of source code must retain the above copyright notice, |
||||||
|
* this list of conditions and the following disclaimer. |
||||||
|
* |
||||||
|
* * Redistributions in binary form must reproduce the above copyright notice, |
||||||
|
* this list of conditions and the following disclaimer in the documentation |
||||||
|
* and / or other materials provided with the distribution. |
||||||
|
* |
||||||
|
* * Neither the names of the copyright holders nor the names of the contributors |
||||||
|
* may be used to endorse or promote products derived from this software |
||||||
|
* without specific prior written permission. |
||||||
|
* |
||||||
|
* This software is provided by the copyright holders and contributors "as is" and |
||||||
|
* any express or implied warranties, including, but not limited to, the implied |
||||||
|
* warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||||
|
* In no event shall copyright holders or contributors be liable for any direct, |
||||||
|
* indirect, incidental, special, exemplary, or consequential damages |
||||||
|
* (including, but not limited to, procurement of substitute goods or services; |
||||||
|
* loss of use, data, or profits; or business interruption) however caused |
||||||
|
* and on any theory of liability, whether in contract, strict liability, |
||||||
|
* or tort(including negligence or otherwise) arising in any way out of |
||||||
|
* the use of this software, even if advised of the possibility of such damage. |
||||||
|
*/ |
||||||
|
|
||||||
|
#include "precomp.hpp" |
||||||
|
#include <vector> |
||||||
|
#include <opencv2/core.hpp> |
||||||
|
#include <opencv2/imgproc.hpp> |
||||||
|
|
||||||
|
using namespace cv; |
||||||
|
using namespace std; |
||||||
|
|
||||||
|
namespace |
||||||
|
{ |
||||||
|
void shift(InputArray src, OutputArray dst, int shift_x, int shift_y) { |
||||||
|
Mat S = src.getMat(); |
||||||
|
Mat D = dst.getMat(); |
||||||
|
|
||||||
|
if(S.data == D.data){ |
||||||
|
S = S.clone(); |
||||||
|
} |
||||||
|
|
||||||
|
D.create(S.size(), S.type()); |
||||||
|
|
||||||
|
Mat s0(S, Rect(0, 0, S.cols - shift_x, S.rows - shift_y)); |
||||||
|
Mat s1(S, Rect(S.cols - shift_x, 0, shift_x, S.rows - shift_y)); |
||||||
|
Mat s2(S, Rect(0, S.rows - shift_y, S.cols-shift_x, shift_y)); |
||||||
|
Mat s3(S, Rect(S.cols - shift_x, S.rows- shift_y, shift_x, shift_y)); |
||||||
|
|
||||||
|
Mat d0(D, Rect(shift_x, shift_y, S.cols - shift_x, S.rows - shift_y)); |
||||||
|
Mat d1(D, Rect(0, shift_y, shift_x, S.rows - shift_y)); |
||||||
|
Mat d2(D, Rect(shift_x, 0, S.cols-shift_x, shift_y)); |
||||||
|
Mat d3(D, Rect(0,0,shift_x, shift_y)); |
||||||
|
|
||||||
|
s0.copyTo(d0); |
||||||
|
s1.copyTo(d1); |
||||||
|
s2.copyTo(d2); |
||||||
|
s3.copyTo(d3); |
||||||
|
} |
||||||
|
|
||||||
|
// dft after padding imaginary
|
||||||
|
void fft(InputArray src, OutputArray dst) { |
||||||
|
Mat S = src.getMat(); |
||||||
|
Mat planes[] = { S, Mat::zeros(S.size(), S.type()) }; |
||||||
|
merge(planes, 2, dst); |
||||||
|
|
||||||
|
// compute the result
|
||||||
|
dft(dst, dst); |
||||||
|
} |
||||||
|
|
||||||
|
void psf2otf(InputArray src, OutputArray dst, int height, int width){ |
||||||
|
Mat S = src.getMat(); |
||||||
|
Mat D = dst.getMat(); |
||||||
|
|
||||||
|
Mat padded; |
||||||
|
|
||||||
|
if(S.data == D.data){ |
||||||
|
S = S.clone(); |
||||||
|
} |
||||||
|
|
||||||
|
// add padding
|
||||||
|
copyMakeBorder(S, padded, 0, height - S.rows, 0, width - S.cols, |
||||||
|
BORDER_CONSTANT, Scalar::all(0)); |
||||||
|
|
||||||
|
shift(padded, padded, width - S.cols / 2, height - S.rows / 2); |
||||||
|
|
||||||
|
// convert to frequency domain
|
||||||
|
fft(padded, dst); |
||||||
|
} |
||||||
|
|
||||||
|
void dftMultiChannel(InputArray src, vector<Mat> &dst){ |
||||||
|
Mat S = src.getMat(); |
||||||
|
|
||||||
|
split(S, dst); |
||||||
|
|
||||||
|
for(int i = 0; i < S.channels(); i++){ |
||||||
|
fft(dst[i], dst[i]); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
void idftMultiChannel(const vector<Mat> &src, OutputArray dst){ |
||||||
|
Mat *channels = new Mat[src.size()]; |
||||||
|
|
||||||
|
for(int i = 0 ; unsigned(i) < src.size(); i++){ |
||||||
|
idft(src[i], channels[i]); |
||||||
|
Mat realImg[2]; |
||||||
|
split(channels[i], realImg); |
||||||
|
channels[i] = realImg[0] / src[i].cols / src[i].rows; |
||||||
|
} |
||||||
|
|
||||||
|
Mat D; |
||||||
|
merge(channels, src.size(), D); |
||||||
|
D.copyTo(dst); |
||||||
|
|
||||||
|
delete[] channels; |
||||||
|
} |
||||||
|
|
||||||
|
void addComplex(InputArray aSrc, int bSrc, OutputArray dst){ |
||||||
|
Mat panels[2]; |
||||||
|
split(aSrc.getMat(), panels); |
||||||
|
panels[0] = panels[0] + bSrc; |
||||||
|
merge(panels, 2, dst); |
||||||
|
} |
||||||
|
|
||||||
|
void divComplexByReal(InputArray aSrc, InputArray bSrc, OutputArray dst){ |
||||||
|
Mat aPanels[2]; |
||||||
|
Mat bPanels[2]; |
||||||
|
split(aSrc.getMat(), aPanels); |
||||||
|
split(bSrc.getMat(), bPanels); |
||||||
|
|
||||||
|
Mat realPart; |
||||||
|
Mat imaginaryPart; |
||||||
|
|
||||||
|
divide(aPanels[0], bSrc.getMat(), realPart); |
||||||
|
divide(aPanels[1], bSrc.getMat(), imaginaryPart); |
||||||
|
|
||||||
|
aPanels[0] = realPart; |
||||||
|
aPanels[1] = imaginaryPart; |
||||||
|
|
||||||
|
Mat rst; |
||||||
|
merge(aPanels, 2, dst); |
||||||
|
} |
||||||
|
|
||||||
|
void divComplexByRealMultiChannel(const vector<Mat> &numer, |
||||||
|
const vector<Mat> &denom, vector<Mat> &dst) |
||||||
|
{ |
||||||
|
for(int i = 0; unsigned(i) < numer.size(); i++) |
||||||
|
{ |
||||||
|
divComplexByReal(numer[i], denom[i], dst[i]); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
// power of 2 of the absolute value of the complex
|
||||||
|
Mat pow2absComplex(InputArray src){ |
||||||
|
Mat S = src.getMat(); |
||||||
|
|
||||||
|
Mat sPanels[2]; |
||||||
|
split(S, sPanels); |
||||||
|
|
||||||
|
return sPanels[0].mul(sPanels[0]) + sPanels[1].mul(sPanels[1]); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
namespace cv |
||||||
|
{ |
||||||
|
namespace ximgproc |
||||||
|
{ |
||||||
|
|
||||||
|
void l0Smooth(InputArray src, OutputArray dst, double lambda, double kappa) |
||||||
|
{ |
||||||
|
Mat S = src.getMat(); |
||||||
|
|
||||||
|
CV_Assert(!S.empty()); |
||||||
|
CV_Assert(S.depth() == CV_8U || S.depth() == CV_16U |
||||||
|
|| S.depth() == CV_32F || S.depth() == CV_64F); |
||||||
|
|
||||||
|
dst.create(src.size(), src.type()); |
||||||
|
|
||||||
|
if(S.data == dst.getMat().data){ |
||||||
|
S = S.clone(); |
||||||
|
} |
||||||
|
|
||||||
|
if(S.depth() == CV_8U) |
||||||
|
{ |
||||||
|
S.convertTo(S, CV_32F, 1/255.0f); |
||||||
|
} |
||||||
|
else if(S.depth() == CV_16U) |
||||||
|
{ |
||||||
|
S.convertTo(S, CV_32F, 1/65535.0f); |
||||||
|
}else if(S.depth() == CV_64F){ |
||||||
|
S.convertTo(S, CV_32F); |
||||||
|
} |
||||||
|
|
||||||
|
const double betaMax = 100000; |
||||||
|
|
||||||
|
// gradient operators in frequency domain
|
||||||
|
Mat otfFx, otfFy; |
||||||
|
float kernel[2] = {-1, 1}; |
||||||
|
float kernel_inv[2] = {1,-1}; |
||||||
|
psf2otf(Mat(1,2,CV_32FC1, kernel_inv), otfFx, S.rows, S.cols); |
||||||
|
psf2otf(Mat(2,1,CV_32FC1, kernel_inv), otfFy, S.rows, S.cols); |
||||||
|
|
||||||
|
vector<Mat> denomConst; |
||||||
|
Mat tmp = pow2absComplex(otfFx) + pow2absComplex(otfFy); |
||||||
|
|
||||||
|
for(int i = 0; i < S.channels(); i++){ |
||||||
|
denomConst.push_back(tmp); |
||||||
|
} |
||||||
|
|
||||||
|
// input image in frequency domain
|
||||||
|
vector<Mat> numerConst; |
||||||
|
dftMultiChannel(S, numerConst); |
||||||
|
|
||||||
|
/*********************************
|
||||||
|
* solver |
||||||
|
*********************************/ |
||||||
|
double beta = 2 * lambda; |
||||||
|
while(beta < betaMax){ |
||||||
|
// h, v subproblem
|
||||||
|
Mat h, v; |
||||||
|
|
||||||
|
filter2D(S, h, -1, Mat(1, 2, CV_32FC1, kernel), Point(0, 0), |
||||||
|
0, BORDER_REPLICATE); |
||||||
|
filter2D(S, v, -1, Mat(2, 1, CV_32FC1, kernel), Point(0, 0), |
||||||
|
0, BORDER_REPLICATE); |
||||||
|
|
||||||
|
Mat hvMag = h.mul(h) + v.mul(v); |
||||||
|
|
||||||
|
Mat mask; |
||||||
|
if(S.channels() == 1) |
||||||
|
{ |
||||||
|
threshold(hvMag, mask, lambda/beta, 1, THRESH_BINARY); |
||||||
|
} |
||||||
|
else if(S.channels() > 1) |
||||||
|
{ |
||||||
|
Mat *channels = new Mat[S.channels()]; |
||||||
|
split(hvMag, channels); |
||||||
|
hvMag = channels[0]; |
||||||
|
|
||||||
|
for(int i = 1; i < S.channels(); i++){ |
||||||
|
hvMag = hvMag + channels[i]; |
||||||
|
} |
||||||
|
|
||||||
|
threshold(hvMag, mask, lambda/beta, 1, THRESH_BINARY); |
||||||
|
|
||||||
|
Mat in[] = {mask, mask, mask}; |
||||||
|
merge(in, 3, mask); |
||||||
|
|
||||||
|
delete[] channels; |
||||||
|
} |
||||||
|
|
||||||
|
h = h.mul(mask); |
||||||
|
v = v.mul(mask); |
||||||
|
|
||||||
|
// S subproblem
|
||||||
|
vector<Mat> denom(S.channels()); |
||||||
|
for(int i = 0; i < S.channels(); i++){ |
||||||
|
denom[i] = beta * denomConst[i] + 1; |
||||||
|
} |
||||||
|
|
||||||
|
Mat hGrad, vGrad; |
||||||
|
filter2D(h, hGrad, -1, Mat(1, 2, CV_32FC1, kernel_inv)); |
||||||
|
filter2D(v, vGrad, -1, Mat(2, 1, CV_32FC1, kernel_inv)); |
||||||
|
|
||||||
|
vector<Mat> hvGradFreq; |
||||||
|
dftMultiChannel(hGrad+vGrad, hvGradFreq); |
||||||
|
|
||||||
|
vector<Mat> numer(S.channels()); |
||||||
|
for(int i = 0; i < S.channels(); i++){ |
||||||
|
numer[i] = numerConst[i] + hvGradFreq[i] * beta; |
||||||
|
} |
||||||
|
|
||||||
|
vector<Mat> sFreq(S.channels()); |
||||||
|
divComplexByRealMultiChannel(numer, denom, sFreq); |
||||||
|
|
||||||
|
idftMultiChannel(sFreq, S); |
||||||
|
|
||||||
|
beta = beta * kappa; |
||||||
|
} |
||||||
|
|
||||||
|
Mat D = dst.getMat(); |
||||||
|
if(D.depth() == CV_8U) |
||||||
|
{ |
||||||
|
S.convertTo(D, CV_8U, 255); |
||||||
|
} |
||||||
|
else if(D.depth() == CV_16U) |
||||||
|
{ |
||||||
|
S.convertTo(D, CV_16U, 65535); |
||||||
|
}else if(D.depth() == CV_64F){ |
||||||
|
S.convertTo(D, CV_64F); |
||||||
|
}else{ |
||||||
|
S.copyTo(D); |
||||||
|
} |
||||||
|
} |
||||||
|
} |
||||||
|
} |
@ -0,0 +1,120 @@ |
|||||||
|
/*
|
||||||
|
* By downloading, copying, installing or using the software you agree to this license. |
||||||
|
* If you do not agree to this license, do not download, install, |
||||||
|
* copy or use the software. |
||||||
|
* |
||||||
|
* |
||||||
|
* License Agreement |
||||||
|
* For Open Source Computer Vision Library |
||||||
|
* (3 - clause BSD License) |
||||||
|
* |
||||||
|
* Redistribution and use in source and binary forms, with or without modification, |
||||||
|
* are permitted provided that the following conditions are met : |
||||||
|
* |
||||||
|
* *Redistributions of source code must retain the above copyright notice, |
||||||
|
* this list of conditions and the following disclaimer. |
||||||
|
* |
||||||
|
* * Redistributions in binary form must reproduce the above copyright notice, |
||||||
|
* this list of conditions and the following disclaimer in the documentation |
||||||
|
* and / or other materials provided with the distribution. |
||||||
|
* |
||||||
|
* * Neither the names of the copyright holders nor the names of the contributors |
||||||
|
* may be used to endorse or promote products derived from this software |
||||||
|
* without specific prior written permission. |
||||||
|
* |
||||||
|
* This software is provided by the copyright holders and contributors "as is" and |
||||||
|
* any express or implied warranties, including, but not limited to, the implied |
||||||
|
* warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||||
|
* In no event shall copyright holders or contributors be liable for any direct, |
||||||
|
* indirect, incidental, special, exemplary, or consequential damages |
||||||
|
* (including, but not limited to, procurement of substitute goods or services; |
||||||
|
* loss of use, data, or profits; or business interruption) however caused |
||||||
|
* and on any theory of liability, whether in contract, strict liability, |
||||||
|
* or tort(including negligence or otherwise) arising in any way out of |
||||||
|
* the use of this software, even if advised of the possibility of such damage. |
||||||
|
*/ |
||||||
|
|
||||||
|
#include "test_precomp.hpp" |
||||||
|
|
||||||
|
namespace cvtest |
||||||
|
{ |
||||||
|
|
||||||
|
using namespace std; |
||||||
|
using namespace std::tr1; |
||||||
|
using namespace testing; |
||||||
|
using namespace perf; |
||||||
|
using namespace cv; |
||||||
|
using namespace cv::ximgproc; |
||||||
|
|
||||||
|
CV_ENUM(SrcTypes, CV_8UC1, CV_8UC3, CV_16UC1, CV_16UC3); |
||||||
|
typedef tuple<Size, SrcTypes> L0SmoothParams; |
||||||
|
typedef TestWithParam<L0SmoothParams> L0SmoothTest; |
||||||
|
|
||||||
|
TEST(L0SmoothTest, SplatSurfaceAccuracy) |
||||||
|
{ |
||||||
|
RNG rnd(0); |
||||||
|
|
||||||
|
for (int i = 0; i < 3; i++) |
||||||
|
{ |
||||||
|
Size sz(rnd.uniform(512, 1024), rnd.uniform(512, 1024)); |
||||||
|
|
||||||
|
Scalar surfaceValue; |
||||||
|
int srcCn = 3; |
||||||
|
rnd.fill(surfaceValue, RNG::UNIFORM, 0, 255); |
||||||
|
Mat src(sz, CV_MAKE_TYPE(CV_8U, srcCn), surfaceValue); |
||||||
|
|
||||||
|
double lambda = rnd.uniform(0.01, 0.05); |
||||||
|
double kappa = rnd.uniform(1.5, 5.0); |
||||||
|
|
||||||
|
Mat res; |
||||||
|
l0Smooth(src, res, lambda, kappa); |
||||||
|
|
||||||
|
// When filtering a constant image we should get the same image:
|
||||||
|
double normL1 = cvtest::norm(src, res, NORM_L1)/src.total()/src.channels(); |
||||||
|
EXPECT_LE(normL1, 1.0/64); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(L0SmoothTest, MultiThreadReproducibility) |
||||||
|
{ |
||||||
|
if (cv::getNumberOfCPUs() == 1) |
||||||
|
return; |
||||||
|
|
||||||
|
double MAX_DIF = 10.0; |
||||||
|
double MAX_MEAN_DIF = 1.0 / 8.0; |
||||||
|
int loopsCount = 2; |
||||||
|
RNG rng(0); |
||||||
|
|
||||||
|
L0SmoothParams params = GetParam(); |
||||||
|
Size size = get<0>(params); |
||||||
|
int srcType = get<1>(params); |
||||||
|
|
||||||
|
Mat src(size,srcType); |
||||||
|
if(src.depth()==CV_8U) |
||||||
|
randu(src, 0, 255); |
||||||
|
else if(src.depth()==CV_16U) |
||||||
|
randu(src, 0, 65535); |
||||||
|
else |
||||||
|
randu(src, -100000.0f, 100000.0f); |
||||||
|
|
||||||
|
|
||||||
|
for (int iter = 0; iter <= loopsCount; iter++) |
||||||
|
{ |
||||||
|
double lambda = rng.uniform(0.01, 0.05); |
||||||
|
double kappa = rng.uniform(1.5, 5.0); |
||||||
|
|
||||||
|
cv::setNumThreads(cv::getNumberOfCPUs()); |
||||||
|
Mat resMultiThread; |
||||||
|
l0Smooth(src, resMultiThread, lambda, kappa); |
||||||
|
|
||||||
|
cv::setNumThreads(1); |
||||||
|
Mat resSingleThread; |
||||||
|
l0Smooth(src, resSingleThread, lambda, kappa); |
||||||
|
|
||||||
|
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_INF), MAX_DIF); |
||||||
|
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_L1), MAX_MEAN_DIF*src.total()*src.channels()); |
||||||
|
} |
||||||
|
} |
||||||
|
INSTANTIATE_TEST_CASE_P(FullSet, L0SmoothTest,Combine(Values(szODD, szQVGA), SrcTypes::all())); |
||||||
|
|
||||||
|
} |
Loading…
Reference in new issue