Add benchmark for ICDAR2015 dataset using OCRTesseract and ERFilter classes. Gives word spotting f-score 0.642082 with strongly contextualized lexicon (100 words).
parent
306aed4078
commit
6f4a09ca7e
1 changed files with 505 additions and 0 deletions
@ -0,0 +1,505 @@ |
|||||||
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
//
|
||||||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||||
|
//
|
||||||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||||||
|
// If you do not agree to this license, do not download, install,
|
||||||
|
// copy or use the software.
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// License Agreement
|
||||||
|
// For Open Source Computer Vision Library
|
||||||
|
//
|
||||||
|
// Copyright (C) 2014, Itseez Inc, all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
//
|
||||||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||||||
|
// are permitted provided that the following conditions are met:
|
||||||
|
//
|
||||||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer.
|
||||||
|
//
|
||||||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer in the documentation
|
||||||
|
// and/or other materials provided with the distribution.
|
||||||
|
//
|
||||||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||||||
|
// derived from this software without specific prior written permission.
|
||||||
|
//
|
||||||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||||||
|
// any express or implied warranties, including, but not limited to, the implied
|
||||||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||||
|
// In no event shall the Itseez Inc or contributors be liable for any direct,
|
||||||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||||||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||||||
|
// loss of use, data, or profits; or business interruption) however caused
|
||||||
|
// and on any theory of liability, whether in contract, strict liability,
|
||||||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||||||
|
// the use of this software, even if advised of the possibility of such damage.
|
||||||
|
//
|
||||||
|
//M*/
|
||||||
|
|
||||||
|
#include "opencv2/datasets/tr_icdar.hpp" |
||||||
|
|
||||||
|
#include <opencv2/core.hpp> |
||||||
|
|
||||||
|
#include "opencv2/text.hpp" |
||||||
|
#include "opencv2/imgproc.hpp" |
||||||
|
#include "opencv2/imgcodecs.hpp" |
||||||
|
|
||||||
|
#include <cstdio> |
||||||
|
#include <cstdlib> // atoi |
||||||
|
|
||||||
|
#include <iostream> |
||||||
|
|
||||||
|
#include <string> |
||||||
|
#include <vector> |
||||||
|
|
||||||
|
using namespace std; |
||||||
|
using namespace cv; |
||||||
|
using namespace cv::datasets; |
||||||
|
using namespace cv::text; |
||||||
|
|
||||||
|
//Calculate edit distance between two words
|
||||||
|
size_t edit_distance(const string& A, const string& B); |
||||||
|
size_t min(size_t x, size_t y, size_t z); |
||||||
|
bool isRepetitive(const string& s); |
||||||
|
bool sort_by_lenght(const string &a, const string &b); |
||||||
|
//Draw ER's in an image via floodFill
|
||||||
|
void er_draw(vector<Mat> &channels, vector<vector<ERStat> > ®ions, vector<Vec2i> group, Mat& segmentation); |
||||||
|
|
||||||
|
size_t min(size_t x, size_t y, size_t z) |
||||||
|
{ |
||||||
|
return x < y ? min(x,z) : min(y,z); |
||||||
|
} |
||||||
|
|
||||||
|
size_t edit_distance(const string& A, const string& B) |
||||||
|
{ |
||||||
|
size_t NA = A.size(); |
||||||
|
size_t NB = B.size(); |
||||||
|
|
||||||
|
vector< vector<size_t> > M(NA + 1, vector<size_t>(NB + 1)); |
||||||
|
|
||||||
|
for (size_t a = 0; a <= NA; ++a) |
||||||
|
M[a][0] = a; |
||||||
|
|
||||||
|
for (size_t b = 0; b <= NB; ++b) |
||||||
|
M[0][b] = b; |
||||||
|
|
||||||
|
for (size_t a = 1; a <= NA; ++a) |
||||||
|
for (size_t b = 1; b <= NB; ++b) |
||||||
|
{ |
||||||
|
size_t x = M[a-1][b] + 1; |
||||||
|
size_t y = M[a][b-1] + 1; |
||||||
|
size_t z = M[a-1][b-1] + (A[a-1] == B[b-1] ? 0 : 1); |
||||||
|
M[a][b] = min(x,y,z); |
||||||
|
} |
||||||
|
|
||||||
|
return M[A.size()][B.size()]; |
||||||
|
} |
||||||
|
|
||||||
|
bool sort_by_lenght(const string &a, const string &b){return (a.size()>b.size());} |
||||||
|
|
||||||
|
bool isRepetitive(const string& s) |
||||||
|
{ |
||||||
|
int count = 0; |
||||||
|
for (int i=0; i<(int)s.size(); i++) |
||||||
|
{ |
||||||
|
if ((s[i] == 'i') || |
||||||
|
(s[i] == 'l') || |
||||||
|
(s[i] == 'I')) |
||||||
|
count++; |
||||||
|
} |
||||||
|
if (count > ((int)s.size()+1)/2) |
||||||
|
{ |
||||||
|
return true; |
||||||
|
} |
||||||
|
return false; |
||||||
|
} |
||||||
|
|
||||||
|
|
||||||
|
void er_draw(vector<Mat> &channels, vector<vector<ERStat> > ®ions, vector<Vec2i> group, Mat& segmentation) |
||||||
|
{ |
||||||
|
for (int r=0; r<(int)group.size(); r++) |
||||||
|
{ |
||||||
|
ERStat er = regions[group[r][0]][group[r][1]]; |
||||||
|
if (er.parent != NULL) // deprecate the root region
|
||||||
|
{ |
||||||
|
int newMaskVal = 255; |
||||||
|
int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY; |
||||||
|
floodFill(channels[group[r][0]],segmentation,Point(er.pixel%channels[group[r][0]].cols,er.pixel/channels[group[r][0]].cols), |
||||||
|
Scalar(255),0,Scalar(er.level),Scalar(0),flags); |
||||||
|
} |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
int main(int argc, char *argv[]) |
||||||
|
{ |
||||||
|
const char *keys = |
||||||
|
"{ help h usage ? | | show this message }" |
||||||
|
"{ path p |true| path to dataset root folder }" |
||||||
|
"{ ws wordspotting| | evaluate \"word spotting\" results }" |
||||||
|
"{ lex lexicon |1 | 0:no-lexicon, 1:100-words, 2:full-lexicon }"; |
||||||
|
|
||||||
|
CommandLineParser parser(argc, argv, keys); |
||||||
|
string path(parser.get<string>("path")); |
||||||
|
if (parser.has("help") || path=="true") |
||||||
|
{ |
||||||
|
parser.printMessage(); |
||||||
|
return -1; |
||||||
|
} |
||||||
|
|
||||||
|
bool is_word_spotting = parser.has("ws"); |
||||||
|
int selected_lex = parser.get<int>("lex"); |
||||||
|
if ((selected_lex < 0) || (selected_lex > 2)) |
||||||
|
{ |
||||||
|
parser.printMessage(); |
||||||
|
printf("Unsupported lex value.\n"); |
||||||
|
return -1; |
||||||
|
} |
||||||
|
|
||||||
|
// loading train & test images description
|
||||||
|
Ptr<TR_icdar> dataset = TR_icdar::create(); |
||||||
|
dataset->load(path); |
||||||
|
|
||||||
|
|
||||||
|
vector<double> f1Each; |
||||||
|
|
||||||
|
unsigned int correctNum = 0; |
||||||
|
unsigned int returnedNum = 0; |
||||||
|
unsigned int returnedCorrectNum = 0; |
||||||
|
|
||||||
|
vector< Ptr<Object> >& test = dataset->getTest(); |
||||||
|
unsigned int num = 0; |
||||||
|
for (vector< Ptr<Object> >::iterator itT=test.begin(); itT!=test.end(); ++itT) |
||||||
|
{ |
||||||
|
TR_icdarObj *example = static_cast<TR_icdarObj *>((*itT).get()); |
||||||
|
|
||||||
|
num++; |
||||||
|
printf("processed image: %u, name: %s\n", num, example->fileName.c_str()); |
||||||
|
|
||||||
|
vector<string> empty_lexicon; |
||||||
|
vector<string> *lex; |
||||||
|
switch (selected_lex) |
||||||
|
{ |
||||||
|
case 0: |
||||||
|
lex = &empty_lexicon; |
||||||
|
break; |
||||||
|
case 2: |
||||||
|
lex = &example->lexFull; |
||||||
|
break; |
||||||
|
default: |
||||||
|
lex = &example->lex100; |
||||||
|
break; |
||||||
|
} |
||||||
|
|
||||||
|
correctNum += example->words.size(); |
||||||
|
unsigned int correctNumEach = example->words.size(); |
||||||
|
|
||||||
|
// Take care of dontcare regions t.value == "###"
|
||||||
|
for (size_t w=0; w<example->words.size(); w++) |
||||||
|
{ |
||||||
|
string w_upper = example->words[w].value; |
||||||
|
transform(w_upper.begin(), w_upper.end(), w_upper.begin(), ::toupper); |
||||||
|
if ((find (lex->begin(), lex->end(), w_upper) == lex->end()) && |
||||||
|
(is_word_spotting) && (selected_lex != 0)) |
||||||
|
example->words[w].value = "###"; |
||||||
|
if ( (example->words[w].value == "###") || (example->words[w].value.size()<3) ) |
||||||
|
{ |
||||||
|
correctNum --; |
||||||
|
correctNumEach --; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
unsigned int returnedNumEach = 0; |
||||||
|
unsigned int returnedCorrectNumEach = 0; |
||||||
|
|
||||||
|
Mat image = imread((path+"/test/"+example->fileName).c_str()); |
||||||
|
|
||||||
|
/*Text Detection*/ |
||||||
|
|
||||||
|
// Extract channels to be processed individually
|
||||||
|
vector<Mat> channels; |
||||||
|
|
||||||
|
Mat grey; |
||||||
|
cvtColor(image,grey,COLOR_RGB2GRAY); |
||||||
|
|
||||||
|
// Notice here we are only using grey channel, see textdetection.cpp for example with more channels
|
||||||
|
channels.push_back(grey); |
||||||
|
channels.push_back(255-grey); |
||||||
|
|
||||||
|
|
||||||
|
// Create ERFilter objects with the 1st and 2nd sworde default classifiers
|
||||||
|
Ptr<ERFilter> er_filter1 = createERFilterNM1(loadClassifierNM1("trained_classifierNM1.xml"),8,0.00015f,0.13f,0.2f,true,0.1f); |
||||||
|
Ptr<ERFilter> er_filter2 = createERFilterNM2(loadClassifierNM2("trained_classifierNM2.xml"),0.5); |
||||||
|
|
||||||
|
vector<vector<ERStat> > regions(channels.size()); |
||||||
|
// Apply the default cascade classifier to each independent channel (could be done in parallel)
|
||||||
|
for (int c=0; c<(int)channels.size(); c++) |
||||||
|
{ |
||||||
|
er_filter1->run(channels[c], regions[c]); |
||||||
|
er_filter2->run(channels[c], regions[c]); |
||||||
|
} |
||||||
|
|
||||||
|
// Detect character groups
|
||||||
|
vector< vector<Vec2i> > nm_region_groups; |
||||||
|
vector<Rect> nm_boxes; |
||||||
|
erGrouping(image, channels, regions, nm_region_groups, nm_boxes, ERGROUPING_ORIENTATION_HORIZ); |
||||||
|
|
||||||
|
/*Text Recognition (OCR)*/ |
||||||
|
|
||||||
|
Ptr<OCRTesseract> ocr = OCRTesseract::create(); |
||||||
|
bool ocr_is_tesseract = true; |
||||||
|
|
||||||
|
vector<string> final_words; |
||||||
|
vector<Rect> final_boxes; |
||||||
|
vector<float> final_confs; |
||||||
|
for (int i=0; i<(int)nm_boxes.size(); i++) |
||||||
|
{ |
||||||
|
Mat group_img = Mat::zeros(image.rows+2, image.cols+2, CV_8UC1); |
||||||
|
er_draw(channels, regions, nm_region_groups[i], group_img); |
||||||
|
if (ocr_is_tesseract) |
||||||
|
{ |
||||||
|
group_img(nm_boxes[i]).copyTo(group_img); |
||||||
|
copyMakeBorder(group_img,group_img,15,15,15,15,BORDER_CONSTANT,Scalar(0)); |
||||||
|
} else { |
||||||
|
group_img(Rect(1,1,image.cols,image.rows)).copyTo(group_img); |
||||||
|
} |
||||||
|
|
||||||
|
string output; |
||||||
|
vector<Rect> boxes; |
||||||
|
vector<string> words; |
||||||
|
vector<float> confidences; |
||||||
|
ocr->run(grey, group_img, output, &boxes, &words, &confidences, OCR_LEVEL_WORD); |
||||||
|
|
||||||
|
output.erase(remove(output.begin(), output.end(), '\n'), output.end()); |
||||||
|
//cout << "OCR output = \"" << output << "\" lenght = " << output.size() << endl;
|
||||||
|
|
||||||
|
if (output.size() < 3) |
||||||
|
continue; |
||||||
|
|
||||||
|
for (int j=0; j<(int)boxes.size(); j++) |
||||||
|
{ |
||||||
|
if (ocr_is_tesseract) |
||||||
|
{ |
||||||
|
boxes[j].x += nm_boxes[i].x-15; |
||||||
|
boxes[j].y += nm_boxes[i].y-15; |
||||||
|
} |
||||||
|
|
||||||
|
float min_confidence = (ocr_is_tesseract)? 51. : 0.; |
||||||
|
float min_confidence4 = (ocr_is_tesseract)? 60. : 0.; |
||||||
|
//cout << " word = " << words[j] << "\t confidence = " << confidences[j] << endl;
|
||||||
|
if ((words[j].size() < 2) || (confidences[j] < min_confidence) || |
||||||
|
((words[j].size()==2) && (words[j][0] == words[j][1])) || |
||||||
|
((words[j].size()< 4) && (confidences[j] < min_confidence4)) || |
||||||
|
isRepetitive(words[j])) |
||||||
|
{ |
||||||
|
continue; |
||||||
|
} |
||||||
|
|
||||||
|
std::transform(words[j].begin(), words[j].end(), words[j].begin(), ::toupper); |
||||||
|
|
||||||
|
/* Increase confidence of predicted words matching a word in the lexicon */ |
||||||
|
if (lex->size() > 0) |
||||||
|
{ |
||||||
|
if (find(lex->begin(), lex->end(), words[j]) == lex->end()) |
||||||
|
confidences[j] = 200; |
||||||
|
} |
||||||
|
|
||||||
|
final_words.push_back(words[j]); |
||||||
|
final_boxes.push_back(boxes[j]); |
||||||
|
final_confs.push_back(confidences[j]); |
||||||
|
} |
||||||
|
|
||||||
|
} |
||||||
|
|
||||||
|
/* Non Maximal Suppression using OCR confidence */ |
||||||
|
float thr = 0.5; |
||||||
|
|
||||||
|
for (size_t i=0; i<final_words.size(); ) |
||||||
|
{ |
||||||
|
int to_delete = -1; |
||||||
|
for (size_t j=i+1; j<final_words.size(); ) |
||||||
|
{ |
||||||
|
to_delete = -1; |
||||||
|
Rect intersection = final_boxes[i] & final_boxes[j]; |
||||||
|
float IoU = (float)intersection.area() / (final_boxes[i].area() + final_boxes[j].area() - intersection.area()); |
||||||
|
if ((IoU > thr) || (intersection.area() > 0.8*final_boxes[i].area()) || (intersection.area() > 0.8*final_boxes[j].area())) |
||||||
|
{ |
||||||
|
// if regions overlap more than thr delete the one with lower confidence
|
||||||
|
to_delete = (final_confs[i] < final_confs[j]) ? i : j; |
||||||
|
|
||||||
|
if (to_delete == (int)j ) |
||||||
|
{ |
||||||
|
final_words.erase(final_words.begin()+j); |
||||||
|
final_boxes.erase(final_boxes.begin()+j); |
||||||
|
final_confs.erase(final_confs.begin()+j); |
||||||
|
continue; |
||||||
|
} else { |
||||||
|
break; |
||||||
|
} |
||||||
|
} |
||||||
|
j++; |
||||||
|
} |
||||||
|
if (to_delete == (int)i ) |
||||||
|
{ |
||||||
|
final_words.erase(final_words.begin()+i); |
||||||
|
final_boxes.erase(final_boxes.begin()+i); |
||||||
|
final_confs.erase(final_confs.begin()+i); |
||||||
|
continue; |
||||||
|
} |
||||||
|
i++; |
||||||
|
} |
||||||
|
|
||||||
|
/* Predicted words which are not in the lexicon are filtered
|
||||||
|
or changed to match one (when edit distance ratio < 0.34)*/ |
||||||
|
float max_edit_distance_ratio = 0.34; |
||||||
|
for (size_t j=0; j<final_boxes.size(); j++) |
||||||
|
{ |
||||||
|
|
||||||
|
if (lex->size() > 0) |
||||||
|
{ |
||||||
|
if (find(lex->begin(), lex->end(), final_words[j]) == lex->end()) |
||||||
|
{ |
||||||
|
int best_match = -1; |
||||||
|
int best_dist = final_words[j].size(); |
||||||
|
for (size_t l=0; l<lex->size(); l++) |
||||||
|
{ |
||||||
|
int dist = edit_distance(lex->at(l),final_words[j]); |
||||||
|
if (dist < best_dist) |
||||||
|
{ |
||||||
|
best_match = l; |
||||||
|
best_dist = dist; |
||||||
|
} |
||||||
|
} |
||||||
|
if (best_dist/final_words[j].size() < max_edit_distance_ratio) |
||||||
|
final_words[j] = lex->at(best_match); |
||||||
|
else |
||||||
|
continue; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
if ((find (lex->begin(), lex->end(), final_words[j]) |
||||||
|
== lex->end()) && (is_word_spotting) && (selected_lex != 0)) |
||||||
|
continue; |
||||||
|
|
||||||
|
// Output final recognition in csv format compatible with the ICDAR Competition
|
||||||
|
/*cout << final_boxes[j].tl().x << ","
|
||||||
|
<< final_boxes[j].tl().y << "," |
||||||
|
<< min(final_boxes[j].br().x,image.cols-2) |
||||||
|
<< "," << final_boxes[j].tl().y << "," |
||||||
|
<< min(final_boxes[j].br().x,image.cols-2) << "," |
||||||
|
<< min(final_boxes[j].br().y,image.rows-2) << "," |
||||||
|
<< final_boxes[j].tl().x << "," |
||||||
|
<< min(final_boxes[j].br().y,image.rows-2) << "," |
||||||
|
<< final_words[j] << endl ;*/ |
||||||
|
|
||||||
|
returnedNum++; |
||||||
|
returnedNumEach++; |
||||||
|
|
||||||
|
bool matched = false; |
||||||
|
for (vector<word>::iterator it=example->words.begin(); it!=example->words.end(); ++it) |
||||||
|
{ |
||||||
|
word &t = (*it); |
||||||
|
|
||||||
|
// ICDAR protocol accepts recognition up to the first non alphanumeric char
|
||||||
|
string alnum_value = t.value; |
||||||
|
for (size_t c=0; c<alnum_value.size(); c++) |
||||||
|
{ |
||||||
|
if (!isalnum(alnum_value[c])) |
||||||
|
{ |
||||||
|
alnum_value = alnum_value.substr(0,c); |
||||||
|
break; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
std::transform(t.value.begin(), t.value.end(), t.value.begin(), ::toupper); |
||||||
|
if (((t.value==final_words[j]) || (alnum_value==final_words[j])) && |
||||||
|
!(final_boxes[j].tl().x > t.x+t.width || final_boxes[j].br().x < t.x || |
||||||
|
final_boxes[j].tl().y > t.y+t.height || final_boxes[j].br().y < t.y)) |
||||||
|
{ |
||||||
|
matched = true; |
||||||
|
returnedCorrectNum++; |
||||||
|
returnedCorrectNumEach++; |
||||||
|
//cout << "OK!" << endl;
|
||||||
|
break; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
if (!matched) // Take care of dontcare regions t.value == "###"
|
||||||
|
for (vector<word>::iterator it=example->words.begin(); it!=example->words.end(); ++it) |
||||||
|
{ |
||||||
|
word &t = (*it); |
||||||
|
std::transform(t.value.begin(), t.value.end(), t.value.begin(), ::toupper); |
||||||
|
if ((t.value == "###") && |
||||||
|
!(final_boxes[j].tl().x > t.x+t.width || final_boxes[j].br().x < t.x || |
||||||
|
final_boxes[j].tl().y > t.y+t.height || final_boxes[j].br().y < t.y)) |
||||||
|
{ |
||||||
|
matched = true; |
||||||
|
returnedNum--; |
||||||
|
returnedNumEach--; |
||||||
|
//cout << "DontCare!" << endl;
|
||||||
|
break; |
||||||
|
} |
||||||
|
} |
||||||
|
//if (!matched) cout << "FAIL." << endl;
|
||||||
|
} |
||||||
|
|
||||||
|
double p = 0.0; |
||||||
|
if (0 != returnedNumEach) |
||||||
|
{ |
||||||
|
p = 1.0*returnedCorrectNumEach/returnedNumEach; |
||||||
|
} |
||||||
|
double r = 0.0; |
||||||
|
if (0 != correctNumEach) |
||||||
|
{ |
||||||
|
r = 1.0*returnedCorrectNumEach/correctNumEach; |
||||||
|
} |
||||||
|
double f1 = 0.0; |
||||||
|
if (0 != p+r) |
||||||
|
{ |
||||||
|
f1 = 2*(p*r)/(p+r); |
||||||
|
} |
||||||
|
if ( (correctNumEach == 0) && (returnedNumEach == 0) ) |
||||||
|
{ |
||||||
|
p = 1.; |
||||||
|
r = 1.; |
||||||
|
f1 = 1.; |
||||||
|
} |
||||||
|
//printf("|%f|%f|%f|\n",r,p,f1);
|
||||||
|
f1Each.push_back(f1); |
||||||
|
} |
||||||
|
|
||||||
|
double p = 1.0*returnedCorrectNum/returnedNum; |
||||||
|
double r = 1.0*returnedCorrectNum/correctNum; |
||||||
|
double f1 = 2*(p*r)/(p+r); |
||||||
|
|
||||||
|
printf("\n-------------------------------------------------------------------------\n"); |
||||||
|
printf("ICDAR2015 -- Challenge 2: \"Focused Scene Text\" -- Task 4 \"End-to-End\"\n"); |
||||||
|
if (is_word_spotting) printf(" Word spotting results -- "); |
||||||
|
else printf(" End-to-End recognition results -- "); |
||||||
|
switch (selected_lex) |
||||||
|
{ |
||||||
|
case 0: |
||||||
|
printf("generic recognition (no given lexicon)\n"); |
||||||
|
break; |
||||||
|
case 2: |
||||||
|
printf("weakly contextualized lexicon (624 words)\n"); |
||||||
|
break; |
||||||
|
default: |
||||||
|
printf("strongly contextualized lexicon (100 words)\n"); |
||||||
|
break; |
||||||
|
} |
||||||
|
printf(" Recall: %f | Precision: %f | F-score: %f\n", r, p, f1); |
||||||
|
printf("-------------------------------------------------------------------------\n\n"); |
||||||
|
|
||||||
|
/*double mf1 = 0.0;
|
||||||
|
for (vector<double>::iterator it=f1Each.begin(); it!=f1Each.end(); ++it) |
||||||
|
{ |
||||||
|
mf1 += *it; |
||||||
|
} |
||||||
|
mf1 /= f1Each.size(); |
||||||
|
printf("mean f1: %f\n", mf1);*/ |
||||||
|
|
||||||
|
return 0; |
||||||
|
} |
Loading…
Reference in new issue