Add VGG descriptor.

pull/486/head
Balint Cristian 8 years ago
parent c1101a02ee
commit 593e78c5d0
  1. 2
      .gitignore
  2. 1
      modules/xfeatures2d/CMakeLists.txt
  3. 23
      modules/xfeatures2d/cmake/download_vgg.cmake
  4. 7
      modules/xfeatures2d/doc/xfeatures2d.bib
  5. 40
      modules/xfeatures2d/include/opencv2/xfeatures2d.hpp
  6. 35
      modules/xfeatures2d/perf/perf_vgg.cpp
  7. 522
      modules/xfeatures2d/src/vgg.cpp
  8. 6
      modules/xfeatures2d/test/test_features2d.cpp
  9. 72
      modules/xfeatures2d/test/test_rotation_and_scale_invariance.cpp

2
.gitignore vendored

@ -8,3 +8,5 @@
Thumbs.db
tags
tegra/
*.i
.download*

@ -1,3 +1,4 @@
set(the_description "Contributed/Experimental Algorithms for Salient 2D Features Detection")
ocv_define_module(xfeatures2d opencv_core opencv_imgproc opencv_features2d opencv_calib3d opencv_shape opencv_highgui opencv_videoio opencv_ml
OPTIONAL opencv_cudaarithm WRAP python java)
include(cmake/download_vgg.cmake)

@ -0,0 +1,23 @@
set(OPENCV_3RDPARTY_COMMIT "fccf7cd6a4b12079f73bbfb21745f9babcd4eb1d")
set(FILE_HASH_VGG_48 "e8d0dcd54d1bcfdc29203d011a797179")
set(FILE_HASH_VGG_64 "7126a5d9a8884ebca5aea5d63d677225")
set(FILE_HASH_VGG_80 "7cd47228edec52b6d82f46511af325c5")
set(FILE_HASH_VGG_120 "151805e03568c9f490a5e3a872777b75")
set(VGG_DOWNLOAD_URL ${OPENCV_CONTRIB_VGG_URL};$ENV{OPENCV_CONTRIB_VGG_URL};https://raw.githubusercontent.com/Itseez/opencv_3rdparty/${OPENCV_3RDPARTY_COMMIT}/)
function(vgg_download file id)
message(STATUS "Check contents of ${file} ...")
ocv_download(PACKAGE ${file}
HASH ${FILE_HASH_${id}}
URL ${VGG_DOWNLOAD_URL}
DESTINATION_DIR ${CMAKE_CURRENT_LIST_DIR}/../src
DOWNLOAD_DIR ${CMAKE_CURRENT_LIST_DIR}/.download)
endfunction()
vgg_download(vgg_generated_48.i VGG_48)
vgg_download(vgg_generated_64.i VGG_64)
vgg_download(vgg_generated_80.i VGG_80)
vgg_download(vgg_generated_120.i VGG_120)

@ -71,3 +71,10 @@
booktitle={Asian Conference on Computer Vision -- ACCV 2014},
year={2014}
}
@article{Simonyan14,
author = "Simonyan, K. and Vedaldi, A. and Zisserman, A.",
title = "Learning Local Feature Descriptors Using Convex Optimisation",
journal = "IEEE Transactions on Pattern Analysis and Machine Intelligence",
year = "2014"
}

@ -168,7 +168,7 @@ Note: a complete example can be found under /samples/cpp/tutorial_code/xfeatures
class CV_EXPORTS_W LATCH : public Feature2D
{
public:
CV_WRAP static Ptr<LATCH> create(int bytes = 32, bool rotationInvariance = true, int half_ssd_size=3);
CV_WRAP static Ptr<LATCH> create(int bytes = 32, bool rotationInvariance = true, int half_ssd_size=3);
};
/** @brief Class implementing DAISY descriptor, described in @cite Tola10
@ -280,6 +280,44 @@ public:
float m_scale_factor = 1.25f, int m_n_scales = -1, bool m_compute_orientation = false);
};
/** @brief Class implementing VGG (Oxford Visual Geometry Group) descriptor trained end to end
using "Descriptor Learning Using Convex Optimisation" (DLCO) aparatus described in @cite Simonyan14.
@param desc type of descriptor to use, VGG::VGG_120 is default (120 dimensions float)
Available types are VGG::VGG_120, VGG::VGG_80, VGG::VGG_64, VGG::VGG_48
@param isigma gaussian kernel value for image blur (default is 1.4f)
@param img_normalize use image sample intensity normalization (enabled by default)
@param use_orientation sample patterns using keypoints orientation, enabled by default
@param scale_factor adjust the sampling window of detected keypoints to 64.0f (VGG sampling window)
6.25f is default and fits for KAZE, SURF detected keypoints window ratio
6.75f should be the scale for SIFT detected keypoints window ratio
5.00f should be the scale for AKAZE, MSD, AGAST, FAST, BRISK keypoints window ratio
0.75f should be the scale for ORB keypoints ratio
@param dsc_normalize clamp descriptors to 255 and convert to uchar CV_8UC1 (disabled by default)
*/
class CV_EXPORTS_W VGG : public Feature2D
{
public:
CV_WRAP enum
{
VGG_120 = 100, VGG_80 = 101, VGG_64 = 102, VGG_48 = 103,
};
CV_WRAP static Ptr<VGG> create( int desc = VGG::VGG_120, float isigma = 1.4f,
bool img_normalize = true, bool use_scale_orientation = true,
float scale_factor = 6.25f, bool dsc_normalize = false );
/**
* @param image image to extract descriptors
* @param keypoints of interest within image
* @param descriptors resulted descriptors array
*/
CV_WRAP virtual void compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) = 0;
};
//! @}
}

@ -0,0 +1,35 @@
#include "perf_precomp.hpp"
using namespace std;
using namespace cv;
using namespace cv::xfeatures2d;
using namespace perf;
using std::tr1::make_tuple;
using std::tr1::get;
typedef perf::TestBaseWithParam<std::string> vgg;
#define VGG_IMAGES \
"cv/detectors_descriptors_evaluation/images_datasets/leuven/img1.png",\
"stitching/a3.png"
PERF_TEST_P(vgg, extract, testing::Values(VGG_IMAGES))
{
string filename = getDataPath(GetParam());
Mat frame = imread(filename, IMREAD_GRAYSCALE);
ASSERT_FALSE(frame.empty()) << "Unable to load source image " << filename;
Mat mask;
declare.in(frame).time(90);
Ptr<KAZE> detector = KAZE::create();
vector<KeyPoint> points;
detector->detect(frame, points, mask);
Ptr<VGG> descriptor = VGG::create();
Mat_<float> descriptors;
// compute keypoints descriptor
TEST_CYCLE() descriptor->compute(frame, points, descriptors);
SANITY_CHECK_NOTHING();
}

@ -0,0 +1,522 @@
/*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2014, 2015
*
* Karen Simonyan <karen at robots dot ox dot ac dot uk>
* Andrea Vedaldi <vedaldi at robots dot ox dot ac dot uk>
* Andrew Zisserman <az at robots dot ox dot ac dot uk>
*
* Visual Geometry Group
* Department of Engineering Science, University of Oxford
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
/*
"Learning Local Feature Descriptors Using Convex Optimisation",
Simonyan, K. and Vedaldi, A. and Zisserman, A.,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014
"Discriminative Learning of Local Image Descriptors",
Matthew A. Brown, Gang Hua, Simon A. J. Winder,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011
OpenCV port by: Cristian Balint <cristian dot balint at gmail dot com>
*/
#include "precomp.hpp"
using namespace cv;
using namespace std;
namespace cv
{
namespace xfeatures2d
{
/*
!VGG implementation
*/
class VGG_Impl : public VGG
{
public:
// constructor
explicit VGG_Impl( int desc = VGG::VGG_80, float isigma = 1.4f,
bool img_normalize = true, bool use_scale_orientation = true,
float scale_factor = 6.25f, bool dsc_normalize = false );
// destructor
virtual ~VGG_Impl();
// returns the descriptor length in bytes
virtual int descriptorSize() const { return m_descriptor_size; };
// returns the descriptor type
virtual int descriptorType() const { return CV_32F; }
// returns the default norm type
virtual int defaultNorm() const { return NORM_L2; }
// compute descriptors given keypoints
virtual void compute( InputArray image, vector<KeyPoint>& keypoints, OutputArray descriptors );
protected:
/*
* VGG parameters
*/
int m_descriptor_size;
// gauss sigma
float m_isigma;
// angle bins
int m_anglebins;
// sample window
float m_scale_factor;
/*
* VGG switches
*/
// normalize image
bool m_img_normalize;
// switch to enable sample by keypoints orientation
bool m_use_scale_orientation;
// normalize desc
bool m_dsc_normalize;
/*
* VGG arrays
*/
// image
Mat m_image;
// pool regions & proj
Mat m_PRFilters, m_Proj;
private:
/*
* VGG functions
*/
// initialize parameters
inline void ini_params( const int PRrows, const int PRcols,
const unsigned int PRidx[], const unsigned int PRidxSize, const unsigned int PR[],
const int PJrows, const int PJcols,
const unsigned int PJidx[], const unsigned int PJidxSize, const unsigned int PJ[] );
}; // END VGG_Impl CLASS
// -------------------------------------------------
/* VGG internal routines */
// sample 64x64 patch from image given keypoint
static inline void get_patch( const KeyPoint kp, Mat& Patch, const Mat& image,
const bool use_scale_orientation, const float scale_factor )
{
// scale & radians
float scale = kp.size / 64.0f * scale_factor;
const float angle = (kp.angle == -1)
? 0 : ( (kp.angle)*(float)CV_PI ) / 180.f;
// transforms
const float tsin = sin(angle) * scale;
const float tcos = cos(angle) * scale;
const float half_cols = (float)Patch.cols / 2.0f;
const float half_rows = (float)Patch.rows / 2.0f;
// sample form original image
for ( int x = 0; x < Patch.cols; x++ )
{
for ( int y = 0; y < Patch.rows; y++ )
{
if ( use_scale_orientation )
{
const float xoff = x - half_cols;
const float yoff = y - half_rows;
// the rotation shifts & scale
int img_x = int( (kp.pt.x + 0.5f) + xoff*tcos - yoff*tsin );
int img_y = int( (kp.pt.y + 0.5f) + xoff*tsin + yoff*tcos );
// sample only within image
if ( ( img_x < image.cols ) && ( img_x >= 0 )
&& ( img_y < image.rows ) && ( img_y >= 0 ) )
Patch.at<float>( y, x ) = image.at<float>( img_y, img_x );
else
Patch.at<float>( y, x ) = 0.0f;
}
else
{
const float xoff = x - half_cols;
const float yoff = y - half_rows;
// the samples from image
int img_x = int( kp.pt.x + 0.5f + xoff );
int img_y = int( kp.pt.y + 0.5f + yoff );
// sample only within image
if ( ( img_x < image.cols ) && ( img_x >= 0 )
&& ( img_y < image.rows ) && ( img_y >= 0 ) )
Patch.at<float>( y, x ) = image.at<float>( img_y, img_x );
else
Patch.at<float>( y, x ) = 0.0f;
}
}
}
}
// get descriptor given 64x64 image patch
static void get_desc( const Mat Patch, Mat& PatchTrans, int anglebins, bool img_normalize )
{
Mat Ix, Iy;
// % compute gradient
float kparam[3] = { -1, 0, 1 };
Mat Kernel( 1, 3, CV_32F, &kparam );
filter2D( Patch, Ix, CV_32F, Kernel, Point( -1, -1 ), 0, BORDER_REPLICATE );
filter2D( Patch, Iy, CV_32F, Kernel.t(), Point( -1, -1 ), 0, BORDER_REPLICATE );
Mat GMag, GAngle;
// % gradient magnitude
// % GMag = sqrt(Ix .^ 2 + Iy .^ 2);
magnitude( Ix, Iy, GMag );
// % gradient orientation: [0; 2 * pi]
// % GAngle = atan2(Iy, Ix) + pi;
//phase( Ix, Iy, GAngle, false ); //<- opencv is buggy
GAngle = Mat( GMag.rows, GMag.cols, CV_32F );
for ( int i = 0; i < (int)GAngle.total(); i++ )
GAngle.at<float>(i) = atan2( Iy.at<float>(i), Ix.at<float>(i) ) + (float)CV_PI;
// % soft-assignment of gradients to the orientation histogram
float AngleStep = 2.0f * (float) CV_PI / (float) anglebins;
Mat GAngleRatio = GAngle / AngleStep - 0.5f;
// % Offset1 = mod(GAngleRatio, 1);
Mat Offset1( GAngleRatio.rows, GAngleRatio.cols, CV_32F );
for ( int i = 0; i < (int)GAngleRatio.total(); i++ )
Offset1.at<float>(i) = GAngleRatio.at<float>(i) - floor( GAngleRatio.at<float>(i) );
Mat w1 = 1.0f - Offset1.t();
Mat w2 = Offset1.t();
Mat Bin1( GAngleRatio.rows, GAngleRatio.cols, CV_8U );
Mat Bin2( GAngleRatio.rows, GAngleRatio.cols, CV_8U );
// % Bin1 = ceil(GAngleRatio);
// % Bin1(Bin1 == 0) = Params.nAngleBins;
for ( int i = 0; i < (int)GAngleRatio.total(); i++ )
{
if ( ceil( GAngleRatio.at<float>(i) - 1.0f) == -1.0f )
Bin1.at<uchar>(i) = (uchar) anglebins - 1;
else
Bin1.at<uchar>(i) = (uchar) ceil( GAngleRatio.at<float>(i) - 1.0f );
}
// % Bin2 = Bin1 + 1;
// % Bin2(Bin2 > Params.nAngleBins) = 1;
for ( int i = 0; i < (int)GAngleRatio.total(); i++ )
{
if ( ( Bin1.at<uchar>(i) + 1 ) > anglebins - 1 )
Bin2.at<uchar>(i) = 0;
else
Bin2.at<uchar>(i) = Bin1.at<uchar>(i) + 1;
}
// normalize
if ( img_normalize )
{
// % Quantile = 0.8;
float q = 0.8f;
// % T = quantile(GMag(:), Quantile);
Mat GMagSorted;
sort( GMag.reshape( 0, 1 ), GMagSorted, SORT_ASCENDING );
int n = GMagSorted.cols;
// scipy/stats/mstats_basic.py#L1718 mquantiles()
// m = alphap + p*(1.-alphap-betap)
// alphap = 0.5 betap = 0.5 => (m = 0.5)
// aleph = (n*p + m)
float aleph = ( n * q + 0.5f );
int k = cvFloor( aleph );
if ( k >= n - 1 ) k = n - 1;
if ( k <= 1 ) k = 1;
float gamma = aleph - k;
if ( gamma >= 1.0f ) gamma = 1.0f;
if ( gamma <= 0.0f ) gamma = 0.0f;
// quantile out from distribution
float T = ( 1.0f - gamma ) * GMagSorted.at<float>( k - 1 )
+ gamma * GMagSorted.at<float>( k );
// avoid NaN
if ( T != 0.0f ) GMag /= ( T / anglebins );
}
Mat Bin1T = Bin1.t();
Mat Bin2T = Bin2.t();
Mat GMagT = GMag.t();
// % feature channels
PatchTrans = Mat( (int)Patch.total(), anglebins, CV_32F, Scalar::all(0) );
for ( int i = 0; i < anglebins; i++ )
{
for ( int p = 0; p < (int)Patch.total(); p++ )
{
if ( Bin1T.at<uchar>(p) == i )
PatchTrans.at<float>(p,i) = w1.at<float>(p) * GMagT.at<float>(p);
if ( Bin2T.at<uchar>(p) == i )
PatchTrans.at<float>(p,i) = w2.at<float>(p) * GMagT.at<float>(p);
}
}
}
// -------------------------------------------------
/* VGG interface implementation */
struct ComputeDescInvoker : ParallelLoopBody
{
ComputeDescInvoker( const Mat& _image, Mat* _descriptors,
const vector<KeyPoint>& _keypoints,
const Mat& _PRFilters, const Mat& _Proj,
const int _anglebins, const bool _img_normalize,
const bool _use_scale_orientation, const float _scale_factor )
{
image = _image;
keypoints = _keypoints;
descriptors = _descriptors;
Proj = _Proj;
PRFilters = _PRFilters;
anglebins = _anglebins;
scale_factor = _scale_factor;
img_normalize = _img_normalize;
use_scale_orientation = _use_scale_orientation;
}
void operator ()(const cv::Range& range) const
{
Mat Desc, PatchTrans;
Mat Patch( 64, 64, CV_32F );
for (int k = range.start; k < range.end; k++)
{
// sample patch from image
get_patch( keypoints[k], Patch, image, use_scale_orientation, scale_factor );
// compute transform
get_desc( Patch, PatchTrans, anglebins, img_normalize );
// pool features
Desc = PRFilters * PatchTrans;
// crop
min( Desc, 1.0f, Desc );
// reshape
Desc = Desc.reshape( 1, (int)Desc.total() );
// project
descriptors->row( k ) = Desc.t() * Proj.t();
}
}
Mat image;
Mat *descriptors;
vector<KeyPoint> keypoints;
Mat Proj;
Mat PRFilters;
int anglebins;
float scale_factor;
bool img_normalize;
bool use_scale_orientation;
};
// descriptor computation using keypoints
void VGG_Impl::compute( InputArray _image, vector<KeyPoint>& keypoints, OutputArray _descriptors )
{
// do nothing if no image
if( _image.getMat().empty() )
return;
m_image = _image.getMat().clone();
// Only 8bit images
CV_Assert( m_image.depth() == CV_8U );
// convert to gray inplace
if( m_image.channels() > 1 )
cvtColor( m_image, m_image, COLOR_BGR2GRAY );
//convert
Mat image;
m_image.convertTo( image, CV_32F );
m_image = image;
image.release();
// smooth whole image
GaussianBlur( m_image, m_image, Size( 0, 0 ), m_isigma, m_isigma, BORDER_REPLICATE );
// allocate array
_descriptors.create( (int) keypoints.size(), m_descriptor_size, CV_32F );
// prepare descriptors
Mat descriptors = _descriptors.getMat();
descriptors.setTo( Scalar(0) );
parallel_for_( Range( 0, (int) keypoints.size() ),
ComputeDescInvoker( m_image, &descriptors, keypoints, m_PRFilters, m_Proj,
m_anglebins, m_img_normalize, m_use_scale_orientation,
m_scale_factor )
);
// normalize desc
if ( m_dsc_normalize )
{
normalize( descriptors, descriptors, 0.0f, 255.0f, NORM_MINMAX, CV_32F );
descriptors.convertTo( _descriptors, CV_8U );
}
}
void VGG_Impl::ini_params( const int PRrows, const int PRcols,
const unsigned int PRidx[], const unsigned int PRidxSize,
const unsigned int PR[],
const int PJrows, const int PJcols,
const unsigned int PJidx[], const unsigned int PJidxSize,
const unsigned int PJ[] )
{
int idx;
// initialize pool-region matrix
m_PRFilters = Mat::zeros( PRrows, PRcols, CV_32F );
// initialize projection matrix
m_Proj = Mat::zeros( PJrows, PJcols, CV_32F );
idx = 0;
// fill sparse pool-region matrix
for ( size_t i = 0; i < PRidxSize; i=i+2 )
{
for ( size_t k = 0; k < PRidx[i+1]; k++ )
{
// expand floats from hex blobs
m_PRFilters.at<float>( PRidx[i] + (int)k ) = *(float *)&PR[idx];
idx++;
}
}
idx = 0;
// fill sparse projection matrix
for ( size_t i = 0; i < PJidxSize; i=i+2 )
{
for ( size_t k = 0; k < PJidx[i+1]; k++ )
{
// expand floats from hex blobs
m_Proj.at<float>( PJidx[i] + (int)k ) = *(float *)&PJ[idx];
idx++;
}
}
}
// constructor
VGG_Impl::VGG_Impl( int _desc, float _isigma, bool _img_normalize,
bool _use_scale_orientation, float _scale_factor, bool _dsc_normalize )
: m_isigma( _isigma ), m_scale_factor( _scale_factor ),
m_img_normalize( _img_normalize ),
m_use_scale_orientation( _use_scale_orientation ),
m_dsc_normalize( _dsc_normalize )
{
// constant
m_anglebins = 8;
// desc type
switch ( _desc )
{
case VGG::VGG_120:
{
#include "vgg_generated_120.i"
ini_params( PRrows, PRcols, PRidx, sizeof(PRidx)/sizeof(PRidx[0]), PR,
PJrows, PJcols, PJidx, sizeof(PJidx)/sizeof(PJidx[0]), PJ );
}
break;
case VGG::VGG_80:
{
#include "vgg_generated_80.i"
ini_params( PRrows, PRcols, PRidx, sizeof(PRidx)/sizeof(PRidx[0]), PR,
PJrows, PJcols, PJidx, sizeof(PJidx)/sizeof(PJidx[0]), PJ );
}
break;
case VGG::VGG_64:
{
#include "vgg_generated_64.i"
ini_params( PRrows, PRcols, PRidx, sizeof(PRidx)/sizeof(PRidx[0]), PR,
PJrows, PJcols, PJidx, sizeof(PJidx)/sizeof(PJidx[0]), PJ );
}
break;
case VGG::VGG_48:
{
#include "vgg_generated_48.i"
ini_params( PRrows, PRcols, PRidx, sizeof(PRidx)/sizeof(PRidx[0]), PR,
PJrows, PJcols, PJidx, sizeof(PJidx)/sizeof(PJidx[0]), PJ );
}
break;
default:
CV_Error( Error::StsInternal, "Unknown Descriptor Type." );
}
// set desc size
m_descriptor_size = m_Proj.rows;
}
// destructor
VGG_Impl::~VGG_Impl()
{
}
Ptr<VGG> VGG::create( int desc, float isigma, bool img_normalize, bool use_scale_orientation,
float scale_factor, bool dsc_normalize )
{
return makePtr<VGG_Impl>( desc, isigma, img_normalize, use_scale_orientation, scale_factor, dsc_normalize );
}
} // END NAMESPACE XFEATURES2D
} // END NAMESPACE CV

@ -1050,6 +1050,12 @@ TEST( Features2d_DescriptorExtractor_LATCH, regression )
test.safe_run();
}
TEST( Features2d_DescriptorExtractor_VGG, regression )
{
CV_DescriptorExtractorTest<L2<float> > test( "descriptor-vgg", 0.03f,
VGG::create() );
test.safe_run();
}
/*#if CV_SSE2

@ -671,6 +671,42 @@ TEST(DISABLED_Features2d_RotationInvariance_Descriptor_DAISY, regression)
test.safe_run();
}
TEST(Features2d_RotationInvariance_Descriptor_VGG120, regression)
{
DescriptorRotationInvarianceTest test(KAZE::create(),
VGG::create(VGG::VGG_120, 1.4f, true, true, 48.0f, false),
NORM_L1,
1.00f);
test.safe_run();
}
TEST(Features2d_RotationInvariance_Descriptor_VGG80, regression)
{
DescriptorRotationInvarianceTest test(KAZE::create(),
VGG::create(VGG::VGG_80, 1.4f, true, true, 48.0f, false),
NORM_L1,
1.00f);
test.safe_run();
}
TEST(Features2d_RotationInvariance_Descriptor_VGG64, regression)
{
DescriptorRotationInvarianceTest test(KAZE::create(),
VGG::create(VGG::VGG_64, 1.4f, true, true, 48.0f, false),
NORM_L1,
1.00f);
test.safe_run();
}
TEST(Features2d_RotationInvariance_Descriptor_VGG48, regression)
{
DescriptorRotationInvarianceTest test(KAZE::create(),
VGG::create(VGG::VGG_48, 1.4f, true, true, 48.0f, false),
NORM_L1,
1.00f);
test.safe_run();
}
TEST(Features2d_RotationInvariance_Descriptor_BRIEF_64, regression)
{
DescriptorRotationInvarianceTest test(SURF::create(),
@ -774,3 +810,39 @@ TEST(DISABLED_Features2d_ScaleInvariance_Descriptor_DAISY, regression)
0.075f);
test.safe_run();
}
TEST(Features2d_ScaleInvariance_Descriptor_VGG120, regression)
{
DescriptorScaleInvarianceTest test(KAZE::create(),
VGG::create(VGG::VGG_120, 1.4f, true, true, 48.0f, false),
NORM_L1,
0.99f);
test.safe_run();
}
TEST(Features2d_ScaleInvariance_Descriptor_VGG80, regression)
{
DescriptorScaleInvarianceTest test(KAZE::create(),
VGG::create(VGG::VGG_80, 1.4f, true, true, 48.0f, false),
NORM_L1,
0.98f);
test.safe_run();
}
TEST(Features2d_ScaleInvariance_Descriptor_VGG64, regression)
{
DescriptorScaleInvarianceTest test(KAZE::create(),
VGG::create(VGG::VGG_64, 1.4f, true, true, 48.0f, false),
NORM_L1,
0.97f);
test.safe_run();
}
TEST(Features2d_ScaleInvariance_Descriptor_VGG48, regression)
{
DescriptorScaleInvarianceTest test(KAZE::create(),
VGG::create(VGG::VGG_48, 1.4f, true, true, 48.0f, false),
NORM_L1,
0.93f);
test.safe_run();
}

Loading…
Cancel
Save