parent
3e0c58c581
commit
56ea364cb2
4 changed files with 226 additions and 204 deletions
@ -0,0 +1,162 @@ |
||||
#include "stump.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
namespace adas |
||||
{ |
||||
|
||||
/* Cumulative sum by rows */ |
||||
static void cumsum(const Mat_<float>& src, Mat_<float> dst) |
||||
{ |
||||
CV_Assert(src.cols > 0); |
||||
|
||||
for( int row = 0; row < src.rows; ++row ) |
||||
{ |
||||
dst(row, 0) = src(row, 0); |
||||
for( int col = 1; col < src.cols; ++col ) |
||||
{ |
||||
dst(row, col) = dst(row, col - 1) + src(row, col); |
||||
} |
||||
} |
||||
} |
||||
|
||||
int Stump::train(const Mat& data, const Mat& labels, const Mat& weights) |
||||
{ |
||||
CV_Assert(labels.rows == 1 && labels.cols == data.cols); |
||||
CV_Assert(weights.rows == 1 && weights.cols == data.cols); |
||||
/* Assert that data and labels have int type */ |
||||
/* Assert that weights have float type */ |
||||
|
||||
|
||||
/* Prepare labels for each feature rearranged according to sorted order */ |
||||
Mat sorted_labels(data.rows, data.cols, labels.type()); |
||||
Mat sorted_weights(data.rows, data.cols, weights.type()); |
||||
Mat indices; |
||||
sortIdx(data, indices, cv::SORT_EVERY_ROW | cv::SORT_ASCENDING); |
||||
for( int row = 0; row < indices.rows; ++row ) |
||||
{ |
||||
for( int col = 0; col < indices.cols; ++col ) |
||||
{ |
||||
sorted_labels.at<int>(row, col) = |
||||
labels.at<int>(0, indices.at<int>(row, col)); |
||||
sorted_weights.at<float>(row, col) = |
||||
weights.at<float>(0, indices.at<float>(row, col)); |
||||
} |
||||
} |
||||
|
||||
/* Sort feature values */ |
||||
Mat sorted_data(data.rows, data.cols, data.type()); |
||||
sort(data, sorted_data, cv::SORT_EVERY_ROW | cv::SORT_ASCENDING); |
||||
|
||||
/* Split positive and negative weights */ |
||||
Mat pos_weights = Mat::zeros(sorted_weights.rows, sorted_weights.cols, |
||||
sorted_weights.type()); |
||||
Mat neg_weights = Mat::zeros(sorted_weights.rows, sorted_weights.cols, |
||||
sorted_weights.type()); |
||||
for( int row = 0; row < data.rows; ++row ) |
||||
{ |
||||
for( int col = 0; col < data.cols; ++col ) |
||||
{ |
||||
if( sorted_labels.at<int>(row, col) == +1 ) |
||||
{ |
||||
pos_weights.at<float>(row, col) = |
||||
sorted_weights.at<float>(row, col); |
||||
} |
||||
else |
||||
{ |
||||
neg_weights.at<float>(row, col) = |
||||
sorted_weights.at<float>(row, col); |
||||
} |
||||
} |
||||
} |
||||
|
||||
/* Compute cumulative sums for fast stump error computation */ |
||||
Mat pos_cum_weights = Mat::zeros(sorted_weights.rows, sorted_weights.cols, |
||||
sorted_weights.type()); |
||||
Mat neg_cum_weights = Mat::zeros(sorted_weights.rows, sorted_weights.cols, |
||||
sorted_weights.type()); |
||||
cumsum(pos_weights, pos_cum_weights); |
||||
cumsum(neg_weights, neg_cum_weights); |
||||
|
||||
/* Compute total weights of positive and negative samples */ |
||||
float pos_total_weight = pos_cum_weights.at<float>(0, weights.cols - 1); |
||||
float neg_total_weight = neg_cum_weights.at<float>(0, weights.cols - 1); |
||||
|
||||
|
||||
float eps = 1. / 4 * labels.cols; |
||||
|
||||
/* Compute minimal error */ |
||||
float min_err = FLT_MAX; |
||||
int min_row = -1; |
||||
int min_col = -1; |
||||
int min_polarity = 0; |
||||
float min_pos_value = 1, min_neg_value = -1; |
||||
|
||||
for( int row = 0; row < sorted_weights.rows; ++row ) |
||||
{ |
||||
for( int col = 0; col < sorted_weights.cols - 1; ++col ) |
||||
{ |
||||
float err, h_pos, h_neg; |
||||
|
||||
// Direct polarity
|
||||
|
||||
float pos_wrong = pos_cum_weights.at<float>(row, col); |
||||
float pos_right = pos_total_weight - pos_wrong; |
||||
|
||||
float neg_right = neg_cum_weights.at<float>(row, col); |
||||
float neg_wrong = neg_total_weight - neg_right; |
||||
|
||||
h_pos = .5 * log((pos_right + eps) / (pos_wrong + eps)); |
||||
h_neg = .5 * log((neg_wrong + eps) / (neg_right + eps)); |
||||
|
||||
err = sqrt(pos_right * neg_wrong) + sqrt(pos_wrong * neg_right); |
||||
|
||||
if( err < min_err ) |
||||
{ |
||||
min_err = err; |
||||
min_row = row; |
||||
min_col = col; |
||||
min_polarity = +1; |
||||
min_pos_value = h_pos; |
||||
min_neg_value = h_neg; |
||||
} |
||||
|
||||
// Opposite polarity
|
||||
swap(pos_right, pos_wrong); |
||||
swap(neg_right, neg_wrong); |
||||
|
||||
h_pos = -h_pos; |
||||
h_neg = -h_neg; |
||||
|
||||
err = sqrt(pos_right * neg_wrong) + sqrt(pos_wrong * neg_right); |
||||
|
||||
|
||||
if( err < min_err ) |
||||
{ |
||||
min_err = err; |
||||
min_row = row; |
||||
min_col = col; |
||||
min_polarity = -1; |
||||
min_pos_value = h_pos; |
||||
min_neg_value = h_neg; |
||||
} |
||||
} |
||||
} |
||||
|
||||
/* Compute threshold, store found values in fields */ |
||||
threshold_ = ( sorted_data.at<int>(min_row, min_col) + |
||||
sorted_data.at<int>(min_row, min_col + 1) ) / 2; |
||||
polarity_ = min_polarity; |
||||
pos_value_ = min_pos_value; |
||||
neg_value_ = min_neg_value; |
||||
|
||||
return min_row; |
||||
} |
||||
|
||||
float Stump::predict(int value) |
||||
{ |
||||
return polarity_ * (value - threshold_) > 0 ? pos_value_ : neg_value_; |
||||
} |
||||
|
||||
} /* namespace adas */ |
||||
} /* namespace cv */ |
@ -0,0 +1,58 @@ |
||||
#ifndef __OPENCV_ADAS_STUMP_HPP__ |
||||
#define __OPENCV_ADAS_STUMP_HPP__ |
||||
|
||||
#include <opencv2/core.hpp> |
||||
|
||||
namespace cv |
||||
{ |
||||
namespace adas |
||||
{ |
||||
|
||||
class Stump |
||||
{ |
||||
public: |
||||
|
||||
/* Initialize zero stump */ |
||||
Stump(): threshold_(0), polarity_(1), pos_value_(1), neg_value_(-1) {} |
||||
|
||||
/* Initialize stump with given threshold, polarity
|
||||
and classification values */ |
||||
Stump(int threshold, int polarity, float pos_value, float neg_value): |
||||
threshold_(threshold), polarity_(polarity), |
||||
pos_value_(pos_value), neg_value_(neg_value) {} |
||||
|
||||
/* Train stump for given data
|
||||
|
||||
data — matrix of feature values, size M x N, one feature per row |
||||
|
||||
labels — matrix of sample class labels, size 1 x N. Labels can be from |
||||
{-1, +1} |
||||
|
||||
weights — matrix of sample weights, size 1 x N |
||||
|
||||
Returns chosen feature index. Feature enumeration starts from 0 |
||||
*/ |
||||
int train(const Mat& data, const Mat& labels, const Mat& weights); |
||||
|
||||
/* Predict object class given
|
||||
|
||||
value — feature value. Feature must be the same as was chosen |
||||
during training stump |
||||
|
||||
Returns real value, sign(value) means class
|
||||
*/ |
||||
float predict(int value); |
||||
|
||||
private: |
||||
/* Stump decision threshold */ |
||||
int threshold_; |
||||
/* Stump polarity, can be from {-1, +1} */ |
||||
int polarity_; |
||||
/* Classification values for positive and negative classes */ |
||||
float pos_value_, neg_value_; |
||||
}; |
||||
|
||||
} /* namespace adas */ |
||||
} /* namespace cv */ |
||||
|
||||
#endif /* __OPENCV_ADAS_STUMP_HPP__ */ |
Loading…
Reference in new issue