pull/2584/merge
Devansh Batra 2 months ago committed by GitHub
commit 46de410b19
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 9
      modules/ptcloud/CMakeLists.txt
  2. 14
      modules/ptcloud/README.md
  3. 0
      modules/ptcloud/doc/ptcloud.bib
  4. 10
      modules/ptcloud/include/opencv2/ptcloud.hpp
  5. 259
      modules/ptcloud/include/opencv2/ptcloud/sac_segmentation.hpp
  6. 68
      modules/ptcloud/samples/sample_cylinder_fitting.cpp
  7. 48
      modules/ptcloud/samples/sample_plane.cpp
  8. 47
      modules/ptcloud/samples/sample_plane_fitting.cpp
  9. 60
      modules/ptcloud/samples/sample_plane_segmentation.cpp
  10. 42
      modules/ptcloud/samples/sample_sphere.cpp
  11. 42
      modules/ptcloud/samples/sample_sphere_fitting.cpp
  12. 14
      modules/ptcloud/src/precomp.hpp
  13. 756
      modules/ptcloud/src/sac_segmentation.cpp
  14. 9
      modules/ptcloud/test/test_main.cpp
  15. 15
      modules/ptcloud/test/test_precomp.hpp

@ -0,0 +1,9 @@
set(the_description "Point Cloud Object Fitting API")
ocv_define_module(ptcloud opencv_core opencv_highgui opencv_viz opencv_surface_matching WRAP python)
# add test data from samples dir to contrib/ptcloud
ocv_add_testdata(samples/ contrib/ptcloud FILES_MATCHING PATTERN "*.ply")
# add data point cloud files to installation
file(GLOB POINTCLOUD_DATA samples/*.ply)
install(FILES ${POINTCLOUD_DATA} DESTINATION ${OPENCV_OTHER_INSTALL_PATH}/ptcloud COMPONENT libs)

@ -0,0 +1,14 @@
//! @addtogroup ptcloud
//! @{
Point Cloud Module, Object Fitting API
=======================================
To Do
-----------------------------------------
- Cylinder Model Fitting
- Segmentation
- Integrate with Maksym's work
//! @}

@ -0,0 +1,10 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_PTCLOUD_HPP
#define OPENCV_PTCLOUD_HPP
#include "opencv2/ptcloud/sac_segmentation.hpp"
#endif

@ -0,0 +1,259 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_PTCLOUD_SAC_SEGMENTATION
#define OPENCV_PTCLOUD_SAC_SEGMENTATION
#include <vector>
#include <utility>
#include "opencv2/viz.hpp"
#define PLANE_MODEL 1
#define SPHERE_MODEL 2
#define CYLINDER_MODEL 3
#define SAC_METHOD_RANSAC 1
using namespace std;
namespace cv
{
namespace ptcloud
{
//! @addtogroup ptcloud
//! @{
class CV_EXPORTS_W SACModel: public Algorithm {
public:
std::vector<double> ModelCoefficients;
SACModel() {
}
SACModel(std::vector<double> ModelCoefficients);
virtual ~SACModel()
{
}
};
class CV_EXPORTS_W SACPlaneModel : public SACModel {
private:
Point3d center;
Vec3d normal;
Size2d size = Size2d(2.0, 2.0);
public:
~ SACPlaneModel()
{
}
SACPlaneModel() {
}
/** @brief Create a plane model based on the given coefficients and a center point.
@param coefficients coefficients in the plane equations of type Ax + By + Cz + D = 0. Also obtained using SACModelFitting.
@param center the center point of the plane.
@param size the size of the plane.
*/
SACPlaneModel(Vec4d coefficients, Point3d center, Size2d size=Size2d(2.0, 2.0));
/** @brief Create a plane model based on the given coefficients and an arbitrary center point.
@param coefficients coefficients in the plane equations Ax + By + Cz + D = 0.
@param size the size of the plane.
*/
SACPlaneModel(Vec4d coefficients, Size2d size=Size2d(2.0, 2.0));
/** @brief Create a plane model based on the given coefficients and an arbitrary center point.
@param coefficients coefficients in the plane equations Ax + By + Cz + D = 0.
@param size the size of the plane.
*/
SACPlaneModel(std::vector<double> coefficients, Size2d size=Size2d(2.0, 2.0));
viz::WPlane WindowWidget ();
std::pair<double, double> getInliers(Mat cloud, std::vector<unsigned> indices, const double threshold, std::vector<unsigned>& inliers);
};
class CV_EXPORTS_W SACSphereModel : public SACModel {
public:
Point3d center;
double radius;
~ SACSphereModel()
{
}
SACSphereModel() {
}
/** @brief Create a spherical model based on the given center and radius.
@param center the center point of the sphere
@param radius the radius of the sphere.
*/
SACSphereModel(Point3d center, double radius);
/** @brief Create a spherical model based on the parametric coefficients.
This is very helpful for creating a model for the fit models using SACModelFitting class.
@param Coefficients parametric coefficients for the Sphere model
*/
SACSphereModel(const std::vector<double> Coefficients);
SACSphereModel(Vec4d coefficients);
viz::WSphere WindowWidget ();
double euclideanDist(Point3d& p, Point3d& q);
std::pair<double, double> getInliers(Mat cloud, std::vector<unsigned> indices, const double threshold, std::vector<unsigned>& inliers);
};
class CV_EXPORTS_W SACCylinderModel : public SACModel {
public:
Point3d pt_on_axis;
Vec3d axis_dir;
double radius;
double size = 20;
~ SACCylinderModel()
{
}
SACCylinderModel() {
}
// /** @brief Create a spherical model based on the given center and radius.
// @param center the center point of the sphere
// @param radius the radius of the sphere.
// */
// SACCylinderModel(const std::vector<double> Coefficients);
/** @brief Create a spherical model based on the parametric coefficients.
This is very helpful for creating a model for the fit models using SACModelFitting class.
@param Coefficients parametric coefficients for the Sphere model
*/
SACCylinderModel(const std::vector<double> Coefficients);
viz::WCylinder WindowWidget ();
std::pair<double, double> getInliers(Mat cloud, Mat normals, std::vector<unsigned> indices, const double threshold, std::vector<unsigned>& inliers, double normal_distance_weight_ = 0);
};
class CV_EXPORTS_W SACModelFitting {
private:
Mat cloud;
Mat normals;
bool normals_available = false;
int model_type;
int method_type;
double threshold;
long unsigned max_iters;
double normal_distance_weight_ = 0;
public:
// cv::Mat remainingCloud; // will be used while segmentation
// Inlier indices only, not the points themselves. It would work like a mask output for segmentation in 2d.
vector<vector<unsigned>> inliers;
vector<SACModel> model_instances;
/** @brief Initializes SACModelFitting class.
Threshold and Iterations may also be set separately.
@param cloud input Point Cloud.
@param model_type type of model fitting to attempt - values can be either PLANE_MODEL, SPHERE_MODEL, or CYLINDER_MODEL.
@param method_type which method to use - currently, only RANSAC is supported (use value SAC_METHOD_RANSAC).
@param threshold set the threshold while choosing inliers.
@param max_iters number of iterations for Sampling.
*/
SACModelFitting (Mat cloud, int model_type = PLANE_MODEL, int method_type = SAC_METHOD_RANSAC, double threshold = 20,int max_iters = 1000);
// :cloud(cloud), model_type(model_type), method_type(method_type), threshold(threshold), max_iters(max_iters) {}
/** @brief Initializes SACModelFitting class.
Threshold and Iterations may also be set separately.
@param model_type type of model fitting to attempt - values can be either PLANE_MODEL, SPHERE_MODEL, or CYLINDER_MODEL.
@param method_type which method to use - currently, only RANSAC is supported (use value SAC_METHOD_RANSAC).
@param threshold set the threshold while choosing inliers.
@param max_iters number of iterations for Sampling.
*/
SACModelFitting (int model_type = PLANE_MODEL, int method_type = SAC_METHOD_RANSAC, double threshold = 20,int max_iters = 1000);
// :model_type(model_type), method_type(method_type), threshold(threshold), max_iters(max_iters) {}
/** @brief Fit one model, this function would get the best fitting model on the given set of points.
This stores the model in the public class member model_instances, and the mask for inliers in inliers.
*/
bool fit_once(vector<int> remaining_indices = {});
/** @brief Fit multiple models of the same type, this function would get the best fitting models on the given set of points.
This stores the models in the public class member model_instances, and the corresponding masks for inliers in inliers.
Returns False if no valid model could be fit.
@param remaining_cloud_threshold set the threshold for the remaining cloud (from 0 to 1) until which the segmentation should continue.
*/
void segment(float remaining_cloud_threshold = 0.3);
void setCloud(Mat cloud);
void setCloud(Mat cloud, bool with_normals=false);
/** @brief Set the threshold for the fitting.
The threshold is usually the distance from the boundary of model, but may vary from model to model.
This may be helpful when multiple fitting operations are to be performed.
@param threshold the threshold to set.
*/
void set_threshold (double threshold);
/** @brief Set the number of iterations for the fitting.
This may be helpful when multiple fitting operations are to be performed.
@param iterations the threshold to set.
*/
void set_iterations (long unsigned iterations);
/** @brief Set the weight given to normal alignment before comparing overall error with threshold.
* By default it is set to 0.
@param weight the desired normal alignment weight (between 0 to 1).
*/
void set_normal_distance_weight(double weight);
};
bool getSphereFromPoints(const Vec3f*&, const vector<unsigned int>&, Point3d&, double&);
Vec4d getPlaneFromPoints(const Vec3f*&, const std::vector<unsigned int>&, cv::Point3d&);
bool getCylinderFromPoints(Mat cloud, Mat normal,
const std::vector<unsigned> &inliers, vector<double> & coefficients) ;
double euclideanDist(Point3d& p, Point3d& q);
} // ptcloud
} // cv
#endif

@ -0,0 +1,68 @@
#include <opencv2/viz.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/viz/widgets.hpp>
#include <opencv2/ptcloud.hpp>
#include "opencv2/surface_matching.hpp"
#include "opencv2/surface_matching/ppf_helpers.hpp"
#include <cassert>
#include <numeric>
#include <cmath>
#include <iostream>
#include <string>
using namespace cv;
using namespace std;
int main() {
// Mat cloud = cv::ppf_match_3d::loadPLYSimple("./data/semi-cylinder-with-normals-usingOpenCV2.ply", true);
Mat cloud = cv::ppf_match_3d::loadPLYSimple("./data/cylinder-big.ply", false);
Mat ptset;
Mat(cloud.colRange(0,3)).copyTo(ptset);
long unsigned num_points = ptset.rows;
ptset = ptset.reshape(3, num_points);
ptset = ptset.t();
cv::ptcloud::SACModelFitting cylinder_segmentation(CYLINDER_MODEL);
cylinder_segmentation.setCloud(cloud, false);
// add original cloud to window
viz::Viz3d window("original cloud");
viz::WCloud original_cloud(ptset);
window.showWidget("cloud", original_cloud);
cylinder_segmentation.set_threshold(0.5);
cylinder_segmentation.set_iterations(80000);
cylinder_segmentation.set_normal_distance_weight(0.5);
cylinder_segmentation.fit_once();
cout << cylinder_segmentation.inliers.size();
vector<unsigned> inlier_vec = cylinder_segmentation.inliers.at(0);
vector<double> model_coefficients = cylinder_segmentation.model_instances.at(0).ModelCoefficients;
cout << cylinder_segmentation.model_instances.at(0).ModelCoefficients.size();
cv::ptcloud::SACCylinderModel cylinder (model_coefficients);
cout << cylinder.pt_on_axis << endl;
cout << cylinder.axis_dir << endl;
cout << cylinder.radius << endl;
viz::WCylinder model = cylinder.WindowWidget();
window.showWidget("model", model);
const Vec3f* points = ptset.ptr<Vec3f>(0);
cout << endl << endl << inlier_vec.size();
cv::Mat fit_cloud(1, inlier_vec.size(), CV_32FC3);
for(int j=0; j<fit_cloud.cols; ++j){
fit_cloud.at<Vec3f>(0, j) = points[(j)];
}
viz::Viz3d fitted("fitted cloud");
viz::WCloud cloud_widget2(fit_cloud, viz::Color::red());
fitted.showWidget("fit_cloud", cloud_widget2);
window.showWidget("fit_cloud", cloud_widget2);
fitted.spin();
window.spin();
waitKey(1);
}

@ -0,0 +1,48 @@
#include <opencv2/viz.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/viz/widgets.hpp>
#include <opencv2/ptcloud.hpp>
#include <cassert>
#include <numeric>
#include <cmath>
#include <string>
using namespace cv;
using namespace std;
int main() {
Mat cloud = cv::viz::readCloud("./data/CobbleStones.obj");
cv::ptcloud::SACModelFitting planar_segmentation(cloud);
// add original cloud to window
viz::Viz3d window("original cloud");
viz::WCloud original_cloud(cloud);
window.showWidget("cloud", original_cloud);
planar_segmentation.set_threshold(0.001);
planar_segmentation.set_iterations(1000);
planar_segmentation.fit_once();
// Adds segmented (int this case fit, since only once) plane to window
const Vec3f* points = cloud.ptr<Vec3f>(0);
vector<unsigned> inlier_vec = planar_segmentation.inliers.at(0);
cv::Mat fit_cloud(1, inlier_vec.size(), CV_32FC3);
for(int j=0; j<fit_cloud.cols; ++j)
fit_cloud.at<Vec3f>(0, j) = points[inlier_vec.at(j)];
viz::Viz3d fitted("fitted cloud");
viz::WCloud cloud_widget2(fit_cloud, viz::Color::green());
fitted.showWidget("fit plane", cloud_widget2);
window.showWidget("fit plane", cloud_widget2);
vector<double> model_coefficients = planar_segmentation.model_instances.at(0).ModelCoefficients;
cv::ptcloud::SACPlaneModel SACplane (model_coefficients);
window.spin();
fitted.spin();
waitKey(1);
}

@ -0,0 +1,47 @@
#include <opencv2/viz.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/viz/widgets.hpp>
#include <opencv2/ptcloud.hpp>
#include <cassert>
#include <numeric>
#include <cmath>
#include <string>
using namespace cv;
using namespace std;
int main() {
Mat cloud = cv::viz::readCloud("./data/CobbleStones.obj");
cv::ptcloud::SACModelFitting planar_segmentation(cloud);
// add original cloud to window
viz::Viz3d window("original cloud");
viz::WCloud original_cloud(cloud);
window.showWidget("cloud", original_cloud);
planar_segmentation.set_threshold(0.001);
planar_segmentation.set_iterations(1000);
planar_segmentation.fit_once();
// Adds segmented (int this case fit, since only once) plane to window
const Vec3f* points = cloud.ptr<Vec3f>(0);
vector<unsigned> inlier_vec = planar_segmentation.inliers.at(0);
cv::Mat fit_cloud(1, inlier_vec.size(), CV_32FC3);
for(int j=0; j<fit_cloud.cols; ++j)
fit_cloud.at<Vec3f>(0, j) = points[inlier_vec.at(j)];
viz::Viz3d fitted("fitted cloud");
viz::WCloud cloud_widget2(fit_cloud, viz::Color::green());
fitted.showWidget("fit plane", cloud_widget2);
window.showWidget("fit plane", cloud_widget2);
vector<double> model_coefficients = planar_segmentation.model_instances.at(0).ModelCoefficients;
cv::ptcloud::SACPlaneModel SACplane (model_coefficients);
window.spin();
fitted.spin();
waitKey(1);
}

@ -0,0 +1,60 @@
#include <opencv2/viz.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/viz/widgets.hpp>
#include <opencv2/ptcloud.hpp>
#include <cassert>
#include <numeric>
#include <cmath>
#include <string>
using namespace cv;
using namespace std;
int main() {
Mat cloud = cv::viz::readCloud("./data/CobbleStones.obj");
cv::ptcloud::SACModelFitting planar_segmentation(cloud);
// add original cloud to window
viz::Viz3d window("original cloud");
viz::WCloud original_cloud(cloud);
window.showWidget("cloud", original_cloud);
planar_segmentation.set_threshold(0.001);
planar_segmentation.set_iterations(1000);
planar_segmentation.segment();
const Vec3f* points = cloud.ptr<Vec3f>(0);
// Initialise a colors array. These colors will be used (in a cyclic order) to visualise all the segmented planes.
const vector<viz::Color> colors({viz::Color::green(), viz::Color::blue(), viz::Color::red(), viz::Color::yellow(), viz::Color::orange(),viz::Color::olive()});
// Adds segmented planes to window
for (unsigned model_idx = 0; model_idx < planar_segmentation.inliers.size(); model_idx++) {
vector<unsigned> inlier_vec = planar_segmentation.inliers.at(model_idx);
cv::Mat fit_cloud(1, inlier_vec.size(), CV_32FC3);
for(int j=0; j<fit_cloud.cols; ++j)
fit_cloud.at<Vec3f>(0, j) = points[inlier_vec.at(j)];
viz::Viz3d fitted("fit cloud " + to_string(model_idx + 1));
fitted.showWidget("cloud", original_cloud);
// Assign a color to this cloud from the colors array in a cyclic order.
viz::Color cloud_color = colors[model_idx % colors.size()];
viz::WCloud cloud_widget2(fit_cloud, cloud_color);
fitted.showWidget("fit plane", cloud_widget2);
window.showWidget("fit plane " + to_string(model_idx + 1), cloud_widget2);
vector<double> model_coefficients = planar_segmentation.model_instances.at(0).ModelCoefficients;
cv::ptcloud::SACPlaneModel SACplane (model_coefficients);
fitted.spin();
}
window.spin();
// waitKey(1);
}

@ -0,0 +1,42 @@
#include <opencv2/viz.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/viz/widgets.hpp>
#include <opencv2/ptcloud.hpp>
#include <cassert>
#include <numeric>
#include <cmath>
#include <iostream>
#include <string>
using namespace cv;
using namespace std;
int main() {
Mat cloud = cv::viz::readCloud("./data/sphere-big.obj");
cv::ptcloud::SACModelFitting sphere_segmentation(cloud, 2);
/// Adds original cloud to window
viz::Viz3d window("original cloud");
viz::WCloud cloud_widget1(cloud);
window.showWidget("cloud 1", cloud_widget1);
sphere_segmentation.set_threshold(0.001);
sphere_segmentation.set_iterations(10000);
viz::Viz3d fitted("fitted cloud");
sphere_segmentation.fit_once();
vector<double> model_coefficients = sphere_segmentation.model_instances.at(0).ModelCoefficients;
cout << sphere_segmentation.model_instances.at(0).ModelCoefficients.size();
cv::ptcloud::SACSphereModel sphere (model_coefficients);
cout << sphere.center;
cout << sphere.radius;
sphere.radius *= 0.75;
viz::WSphere model = sphere.WindowWidget();
window.showWidget("model", model);
window.spin();
waitKey(1);
}

@ -0,0 +1,42 @@
#include <opencv2/viz.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/viz/widgets.hpp>
#include <opencv2/ptcloud.hpp>
#include <cassert>
#include <numeric>
#include <cmath>
#include <iostream>
#include <string>
using namespace cv;
using namespace std;
int main() {
Mat cloud = cv::viz::readCloud("./data/sphere-big.obj");
cv::ptcloud::SACModelFitting sphere_segmentation(cloud, 2);
/// Adds original cloud to window
viz::Viz3d window("original cloud");
viz::WCloud cloud_widget1(cloud);
window.showWidget("cloud 1", cloud_widget1);
sphere_segmentation.set_threshold(0.001);
sphere_segmentation.set_iterations(10000);
viz::Viz3d fitted("fitted cloud");
sphere_segmentation.fit_once();
vector<double> model_coefficients = sphere_segmentation.model_instances.at(0).ModelCoefficients;
cout << sphere_segmentation.model_instances.at(0).ModelCoefficients.size();
cv::ptcloud::SACSphereModel sphere (model_coefficients);
cout << sphere.center;
cout << sphere.radius;
sphere.radius *= 0.75;
viz::WSphere model = sphere.WindowWidget();
window.showWidget("model", model);
window.spin();
waitKey(1);
}

@ -0,0 +1,14 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_PTCLOUD_PRECOMP_HPP
#define OPENCV_PTCLOUD_PRECOMP_HPP
#include <opencv2/core.hpp>
#include "opencv2/ptcloud/sac_segmentation.hpp"
#include <iostream>
#include <stdio.h>
#include <vector>
#include <algorithm>
#endif

@ -0,0 +1,756 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include <cassert>
#include "opencv2/surface_matching.hpp"
#include "opencv2/surface_matching/ppf_helpers.hpp"
#include <numeric>
#include <limits>
using namespace std;
using namespace cv;
namespace cv
{
namespace ptcloud
{
bool getSphereFromPoints(const Vec3f* &points, const std::vector<unsigned> &inliers, Point3d& center, double& radius) {
// assert that size of points is 3.
Mat temp(5,5,CV_32FC1);
// Vec4f temp;
for(int i = 0; i < 4; i++)
{
unsigned point_idx = inliers[i];
float* tempi = temp.ptr<float>(i);
for(int j = 0; j < 3; j++) {
tempi[j] = (float) points[point_idx][j];
}
tempi[3] = 1;
}
double m11 = determinant(temp);
if (m11 == 0) return false; // no sphere exists
for(int i = 0; i < 4; i++)
{
unsigned point_idx = inliers[i];
float* tempi = temp.ptr<float>(i);
tempi[0] = (float) points[point_idx][0] * (float) points[point_idx][0]
+ (float) points[point_idx][1] * (float) points[point_idx][1]
+ (float) points[point_idx][2] * (float) points[point_idx][2];
}
double m12 = determinant(temp);
for(int i = 0; i < 4; i++)
{
unsigned point_idx = inliers[i];
float* tempi = temp.ptr<float>(i);
tempi[1] = tempi[0];
tempi[0] = (float) points[point_idx][0];
}
double m13 = determinant(temp);
for(int i = 0; i < 4; i++)
{
unsigned point_idx = inliers[i];
float* tempi = temp.ptr<float>(i);
tempi[2] = tempi[1];
tempi[1] = (float) points[point_idx][1];
}
double m14 = determinant(temp);
for(int i = 0; i < 4; i++)
{
unsigned point_idx = inliers[i];
float* tempi = temp.ptr<float>(i);
tempi[0] = tempi[2];
tempi[1] = (float) points[point_idx][0];
tempi[2] = (float) points[point_idx][1];
tempi[3] = (float) points[point_idx][2];
}
double m15 = determinant(temp);
center.x = 0.5 * m12 / m11;
center.y = 0.5 * m13 / m11;
center.z = 0.5 * m14 / m11;
// Radius
radius = std::sqrt (center.x * center.x +
center.y * center.y +
center.z * center.z - m15 / m11);
return (true);
}
Vec4d getPlaneFromPoints(const Vec3f* &points,
const std::vector<unsigned> &inliers, Point3d& center) {
// REF: https://www.ilikebigbits.com/2015_03_04_plane_from_points.html
Vec3f centroid(0, 0, 0);
for (unsigned idx : inliers) {
centroid += points[idx];
}
centroid /= double(inliers.size());
double xx = 0, xy = 0, xz = 0, yy = 0, yz = 0, zz = 0;
for (size_t idx : inliers) {
Vec3f r = points[idx] - centroid;
xx += r(0) * r(0);
xy += r(0) * r(1);
xz += r(0) * r(2);
yy += r(1) * r(1);
yz += r(1) * r(2);
zz += r(2) * r(2);
}
double det_x = yy * zz - yz * yz;
double det_y = xx * zz - xz * xz;
double det_z = xx * yy - xy * xy;
Vec3d abc;
if (det_x > det_y && det_x > det_z) {
abc = Vec3d(det_x, xz * yz - xy * zz, xy * yz - xz * yy);
} else if (det_y > det_z) {
abc = Vec3d(xz * yz - xy * zz, det_y, xy * xz - yz * xx);
} else {
abc = Vec3d(xy * yz - xz * yy, xy * xz - yz * xx, det_z);
}
double magnitude_abc = sqrt(abc[0]*abc[0] + abc[1]* abc[1] + abc[2] * abc[2]);
// Return invalid plane if the points don't span a plane.
if (magnitude_abc == 0) {
return Vec4d (0, 0, 0, 0);
}
abc /= magnitude_abc;
double d = -abc.dot(centroid);
Vec4d coefficients (abc[0], abc[1], abc[2], d);
center = Point3d (centroid);
return coefficients;
}
bool getCylinderFromPoints(const Mat cloud, const Mat normals_cld,
const std::vector<unsigned> &inliers, vector<double> & model_coefficients) {
assert(inliers.size() == 2);
Mat _pointsAndNormals;
assert(normals_cld.cols == cloud.cols);
const Point3d* points = cloud.ptr<Point3d>(0);
const Vec3f* normals = normals_cld.ptr<Vec3f>(0);
if (fabs (points[inliers[0]].x - points[inliers[1]].x) <= std::numeric_limits<float>::epsilon () &&
fabs (points[inliers[0]].y - points[inliers[1]].y) <= std::numeric_limits<float>::epsilon () &&
fabs (points[inliers[0]].z - points[inliers[1]].z) <= std::numeric_limits<float>::epsilon ())
{
return (false);
}
Vec3f p1 (points[inliers[0]].x, points[inliers[0]].y, points[inliers[0]].z);
Vec3f p2 (points[inliers[1]].x, points[inliers[1]].y, points[inliers[1]].z);
Vec3f n1 (normals[inliers[0]] [0], normals[inliers[0]] [1], normals[inliers[0]] [2]);
Vec3f n2 (normals[inliers[1]] [0], normals[inliers[1]] [1], normals[inliers[1]] [2]);
Vec3f w = n1 + p1 - p2;
float a = n1.dot (n1);
float b = n1.dot (n2);
float c = n2.dot (n2);
float d = n1.dot (w);
float e = n2.dot (w);
float denominator = a*c - b*b;
float sc, tc;
// Compute the line parameters of the two closest points
if (denominator < 1e-8) // The lines are almost parallel
{
sc = 0.0f;
tc = (b > c ? d / b : e / c); // Use the largest denominator
}
else
{
sc = (b*e - c*d) / denominator;
tc = (a*e - b*d) / denominator;
}
// point_on_axis, axis_direction
Vec3f line_pt = p1 + n1 + sc * n1;
Vec3f line_dir = p2 + tc * n2 - line_pt;
model_coefficients.resize (7);
// point on line
model_coefficients[0] = line_pt[0];
model_coefficients[1] = line_pt[1];
model_coefficients[2] = line_pt[2];
double divide_by = std::sqrt (line_dir[0] * line_dir[0] +
line_dir[1] * line_dir[1] +
line_dir[2] * line_dir[2]);
// direction of line;
model_coefficients[3] = line_dir[0] / divide_by;
model_coefficients[4] = line_dir[1] / divide_by;
model_coefficients[5] = line_dir[2] / divide_by;
double radius_squared = fabs((line_dir.cross(line_pt - p1)).dot(line_dir.cross(line_pt - p1)) / line_dir.dot(line_dir));
// radius of cylinder
model_coefficients[6] = sqrt(radius_squared);
if (radius_squared == 0) return false;
return (true);
}
SACPlaneModel::SACPlaneModel(Vec4d coefficients, Point3d set_center, Size2d set_size) {
this -> ModelCoefficients.reserve(4);
for (int i = 0; i < 4; i++) {
this -> ModelCoefficients.push_back(coefficients[i]);
}
this -> size = set_size;
this -> normal = Vec3d(coefficients[0], coefficients[1], coefficients[2]);
this -> center = set_center;
// Assign normal vector
for (unsigned i = 0; i < 3; i++) normal[i] = coefficients[i];
}
SACPlaneModel::SACPlaneModel(Vec4d coefficients, Size2d set_size) {
this -> ModelCoefficients.reserve(4);
for (int i = 0; i < 4; i++) {
this->ModelCoefficients.push_back(coefficients[i]);
}
this->size = set_size;
this-> normal = Vec3d(coefficients[0], coefficients[1], coefficients[2]);
this -> center = Point3d(0, 0, - coefficients[3] / coefficients[2]);
// Assign normal vector
for (unsigned i = 0; i < 3; i++) normal[i] = coefficients[i];
if (coefficients[2] != 0) {
center.x = 0;
center.y = 0;
center.z = -coefficients[3] / coefficients[2];
} else if (coefficients[1] != 0) {
center.x = 0;
center.y = -coefficients[3] / coefficients[1];
center.z = 0;
} else if (coefficients[0] != 0) {
center.x = -coefficients[3] / coefficients[0];
center.y = 0;
center.z = 0;
}
}
SACPlaneModel::SACPlaneModel(vector<double> coefficients, Size2d set_size) {
assert(coefficients.size() == 4);
this->ModelCoefficients = coefficients;
this->size = set_size;
// Assign normal vector
for (unsigned i = 0; i < 3; i++) normal[i] = coefficients[i];
// Since the plane viz widget would be finite, it must have a center, we give it an arbitrary center
// from the model coefficients.
if (coefficients[2] != 0) {
center.x = 0;
center.y = 0;
center.z = -coefficients[3] / coefficients[2];
} else if (coefficients[1] != 0) {
center.x = 0;
center.y = -coefficients[3] / coefficients[1];
center.z = 0;
} else if (coefficients[0] != 0) {
center.x = -coefficients[3] / coefficients[0];
center.y = 0;
center.z = 0;
}
}
viz::WPlane SACPlaneModel::WindowWidget () {
return viz::WPlane (this->center, this->normal, Vec3d(1, 0, 0), this->size, viz::Color::green());
}
pair<double, double> SACPlaneModel::getInliers(Mat cloud, vector<unsigned> indices, const double threshold, vector<unsigned>& inliers) {
pair<double, double> result;
inliers.clear();
const Vec3f* points = cloud.ptr<Vec3f>(0);
const unsigned num_points = indices.size();
double magnitude_abc = sqrt(ModelCoefficients[0]*ModelCoefficients[0] + ModelCoefficients[1]* ModelCoefficients[1] + ModelCoefficients[2] * ModelCoefficients[2]);
assert (magnitude_abc == 0);
Vec4d NormalisedCoefficients (ModelCoefficients[0]/magnitude_abc, ModelCoefficients[1]/magnitude_abc, ModelCoefficients[2]/magnitude_abc, ModelCoefficients[3]/magnitude_abc);
double fitness = 0;
double rmse = 0;
for (unsigned i = 0; i < num_points; i++) {
unsigned ind = indices[i];
Vec4d point4d (points[ind][0], points[ind][1], points[ind][2], 1);
double distanceFromPlane = point4d.dot(NormalisedCoefficients);
if (abs(distanceFromPlane) > threshold) continue;
inliers.emplace_back(ind);
fitness+=1;
rmse += distanceFromPlane;
}
unsigned num_inliers = fitness;
if (num_inliers == 0) {
result.first = 0;
result.second = 0;
} else {
rmse /= num_inliers;
fitness /= num_points;
result.first = fitness;
result.second = rmse;
}
return result;
}
SACSphereModel::SACSphereModel(Point3d set_center, double set_radius) {
this -> center = set_center;
this -> radius = set_radius;
this -> ModelCoefficients.reserve(4);
this -> ModelCoefficients.push_back(center.x);
this -> ModelCoefficients.push_back(center.y);
this -> ModelCoefficients.push_back(center.z);
this -> ModelCoefficients.push_back(radius);
}
SACSphereModel::SACSphereModel(Vec4d coefficients) {
this->ModelCoefficients.reserve(4);
for (int i = 0; i < 4; i++) {
this -> ModelCoefficients.push_back(coefficients[i]);
}
this -> center = Point3d(coefficients[0], coefficients[1], coefficients[2]);
this -> radius = coefficients[3];
}
SACSphereModel::SACSphereModel(vector<double> coefficients) {
assert(coefficients.size() == 4);
for (int i = 0; i < 4; i++) {
this->ModelCoefficients.push_back(coefficients[i]);
}
this -> center = Point3d(coefficients[0], coefficients[1], coefficients[2]);
this -> radius = coefficients[3];
}
viz::WSphere SACSphereModel::WindowWidget () {
return viz::WSphere(this->center, this->radius, 10, viz::Color::green());;
}
double SACSphereModel::euclideanDist(Point3d& p, Point3d& q) {
Point3d diff = p - q;
return cv::sqrt(diff.x*diff.x + diff.y*diff.y + diff.z*diff.z);
}
pair<double, double> SACSphereModel::getInliers(Mat cloud, vector<unsigned> indices, const double threshold, vector<unsigned>& inliers) {
pair<double, double> result;
inliers.clear();
const Vec3f* points = cloud.ptr<Vec3f>(0);
const unsigned num_points = indices.size();
double fitness = 0;
double rmse = 0;
if(!isnan(radius)) { // radius may come out to be nan if selected points form a plane
for (unsigned i = 0; i < num_points; i++) {
unsigned ind = indices[i];
Point3d pt (points[ind][0], points[ind][1], points[ind][2]);
double distanceFromCenter = euclideanDist(pt, center);
double distanceFromSurface = distanceFromCenter - radius;
if (distanceFromSurface > threshold) continue;
inliers.emplace_back(ind);
fitness+=1;
rmse += max(0., distanceFromSurface);
}
}
unsigned num_inliers = fitness;
if (num_inliers == 0) {
result.first = 0;
result.second = 0;
} else {
rmse /= num_inliers;
fitness /= num_points;
result.first = fitness;
result.second = rmse;
}
return result;
}
viz::WCylinder SACCylinderModel::WindowWidget () {
Point3d first_point = Point3d( Vec3d(pt_on_axis) + size * (axis_dir));
Point3d second_point = Point3d(Vec3d(pt_on_axis) - size * (axis_dir));
return viz::WCylinder (first_point, second_point, radius, 40, viz::Color::green());
}
SACCylinderModel::SACCylinderModel(const vector<double> coefficients) {
assert(coefficients.size() == 7);
for (int i = 0; i < 7; i++) {
this -> ModelCoefficients.push_back(coefficients[i]);
}
this -> pt_on_axis = Point3d(coefficients[0], coefficients[1], coefficients[2]);
this -> axis_dir = Vec3d(coefficients[3], coefficients[4], coefficients[5]);
this -> radius = coefficients[6];
}
std::pair<double, double> SACCylinderModel::getInliers(Mat cloud, Mat normal_cloud, std::vector<unsigned> indices, const double threshold, std::vector<unsigned>& inliers, double normal_distance_weight_) {
pair<double, double> result;
inliers.clear();
const Vec3f* points = cloud.ptr<Vec3f>(0);
const Vec3f* normals = normal_cloud.ptr<Vec3f>(0);
const unsigned num_points = indices.size();
double fitness = 0;
double rmse = 0;
axis_dir = (axis_dir);
// for (int i = 0; i < num_points; i++) {
// cout << i << " " << points[i] << endl;
// }
if(!isnan(radius)) { // radius may come out to be nan if selected points form a plane
for (unsigned i = 0; i < num_points; i++) {
unsigned ind = indices[i];
Point3d pt (points[ind][0], points[ind][1], points[ind][2]);
Vec3d normal (normals[ind][0], normals[ind][1], normals[ind][2]);
normal = normal / sqrt(normal[0] * normal[0] + normal[1] * normal[1] + normal[2] * normal[2]);
double distanceFromAxis = fabs((axis_dir.cross(pt_on_axis - pt)).dot(axis_dir.cross(pt_on_axis - pt)) / axis_dir.dot(axis_dir));
double distanceFromSurface = fabs(distanceFromAxis - radius*radius);
if (distanceFromSurface > threshold) continue;
// Calculate the point's projection on the cylinder axis
float dist = (pt.dot (axis_dir) - pt_on_axis.dot(axis_dir));
Vec3d pt_proj = Vec3d(pt_on_axis) + dist * axis_dir;
Vec3f dir = Vec3d(pt) - pt_proj;
dir = dir / sqrt(dir[0] * dir[0] + dir[1] * dir[1] + dir[2] * dir[2]);
// Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
double rad = normalize(normal).dot(dir);
if (rad < -1.0) rad = -1.0;
if (rad > 1.0) rad = 1.0;
double d_normal = fabs(acos (rad));
// convert 0 to PI/2
d_normal = (std::min) (d_normal, M_PI - d_normal);
// calculate overall distance as weighted sum of the two distances.
double distance = fabs (normal_distance_weight_ * d_normal + (1 - normal_distance_weight_) * distanceFromSurface);
if (distance > threshold) continue;
inliers.emplace_back(ind);
fitness += 1;
rmse += max(0., distance);
}
}
unsigned num_inliers = fitness;
if (num_inliers == 0) {
result.first = 0;
result.second = 0;
} else {
rmse /= num_inliers;
fitness /= num_points;
result.first = fitness;
result.second = rmse;
}
return result;
}
void SACModelFitting::setCloud(Mat inp_cloud, bool with_normals) {
if (! with_normals) {
// normals are not required.
// the cloud should have three channels.
assert(inp_cloud.channels() == 3 || (inp_cloud.channels() == 1 && (inp_cloud.cols == 3 || inp_cloud.rows == 3)));
if (inp_cloud.rows == 1 && inp_cloud.channels() == 3) {
cloud = inp_cloud.clone();
return;
}
if (inp_cloud.channels() != 3 && inp_cloud.rows == 3) {
inp_cloud = inp_cloud.t();
}
const long unsigned num_points = inp_cloud.rows;
cloud = inp_cloud.reshape(3, num_points);
cloud = cloud.t();
}
else {
assert(inp_cloud.channels() == 1 && (inp_cloud.cols == 6 || inp_cloud.rows == 6));
if (inp_cloud.rows == 6) {
inp_cloud = inp_cloud.t();
}
Mat _cld;
inp_cloud.colRange(0, 3).copyTo(_cld);
Mat _normals;
inp_cloud.colRange(3, 6).copyTo(_normals);
this -> cloud = Mat(_cld).reshape(3, 1);
this -> normals = Mat(_normals).reshape(3, 1);
this -> normals_available = true;
}
}
SACModelFitting::SACModelFitting (Mat set_cloud, int set_model_type, int set_method_type, double set_threshold, int set_max_iters)
:cloud(set_cloud.clone()), model_type(set_model_type), method_type(set_method_type), threshold(set_threshold), max_iters(set_max_iters) {}
SACModelFitting::SACModelFitting (int set_model_type, int set_method_type, double set_threshold, int set_max_iters)
:model_type(set_model_type), method_type(set_method_type), threshold(set_threshold), max_iters(set_max_iters) {}
bool SACModelFitting::fit_once(vector<int> labels /* = {} */) {
// Only RANSAC supported ATM, need to integrate with Maksym's framework.
if (method_type != SAC_METHOD_RANSAC) return false;
// creates an array of indices for the points in the point cloud which will be appended as masks to denote inliers and outliers.
const Vec3f* points = cloud.ptr<Vec3f>(0);
unsigned num_points = cloud.cols;
std::vector<unsigned> indices;
if (labels.size() != num_points) {
indices = std::vector<unsigned> (num_points);
std::iota(std::begin(indices), std::end(indices), 0);
} else {
for (unsigned i = 0; i < num_points; i++) {
if (labels[i] == -1) indices.push_back(i);
}
}
vector<unsigned> inliers_indices;
// Initialize the best plane model.
SACModel bestModel;
pair<double, double> bestResult(0, 0);
if (model_type == PLANE_MODEL) {
const unsigned num_rnd_model_points = 3;
RNG rng((uint64)-1);
for (unsigned i = 0; i < max_iters; ++i) {
vector<unsigned> current_model_inliers;
SACModel model;
for (unsigned j = 0; j < num_rnd_model_points;) {
std::swap(indices[j], indices[rng.uniform(0, num_points)]);
j++;
}
for (unsigned j = 0; j < num_rnd_model_points; j++) {
unsigned idx = indices[j];
current_model_inliers.emplace_back(idx);
}
Point3d center;
Vec4d coefficients = getPlaneFromPoints(points, current_model_inliers, center);
if (coefficients == Vec4d(0, 0, 0, 0)) continue;
SACPlaneModel planeModel (coefficients, center);
pair<double, double> result = planeModel.getInliers(cloud, indices, threshold, current_model_inliers);
// Compare fitness first.
if (bestResult.first < result.first || (bestResult.first == result.first && bestResult.second > result.second )) {
bestResult = result;
bestModel.ModelCoefficients = planeModel.ModelCoefficients;
inliers_indices = current_model_inliers;
}
}
if (bestModel.ModelCoefficients.size()) {
inliers.push_back(inliers_indices);
model_instances.push_back(bestModel);
return true;
}
}
if (model_type == SPHERE_MODEL) {
RNG rng((uint64)-1);
const unsigned num_rnd_model_points = 4;
double bestRadius = 10000000;
for (unsigned i = 0; i < max_iters; ++i) {
vector<unsigned> current_model_inliers;
SACModel model;
for (unsigned j = 0; j < num_rnd_model_points;) {
std::swap(indices[j], indices[rng.uniform(0, num_points)]);
j++;
}
for (unsigned j = 0; j < num_rnd_model_points; j++) {
unsigned idx = indices[j];
current_model_inliers.emplace_back(idx);
}
Point3d center;
double radius;
getSphereFromPoints(points, current_model_inliers, center, radius);
SACSphereModel sphereModel (center, radius);
pair<double, double> result = sphereModel.getInliers(cloud, indices, threshold, current_model_inliers);
// Compare fitness first.
if (bestResult.first < result.first || (bestResult.first == result.first && bestResult.second > result.second)
|| (bestResult.first == result.first)) {
if (bestResult.first == result.first && bestModel.ModelCoefficients.size() == 4 && sphereModel.radius > bestRadius) continue;
bestResult = result;
bestModel.ModelCoefficients = sphereModel.ModelCoefficients;
bestModel.ModelCoefficients = sphereModel.ModelCoefficients;
inliers_indices = current_model_inliers;
}
}
if (bestModel.ModelCoefficients.size()) {
inliers.push_back(inliers_indices);
model_instances.push_back(bestModel);
return true;
}
}
if (model_type == CYLINDER_MODEL) {
assert(this->normals_available == true);
RNG rng((uint64)-1);
const unsigned num_rnd_model_points = 2;
if (!normals_available) {
// Reshape the cloud for Compute Normals Function
Mat _pointsAndNormals;
Vec3d viewpoint(0, 0, 0);
Mat _cld_reshaped = Mat(cloud).t();
_cld_reshaped = _cld_reshaped.reshape(1);
ppf_match_3d::computeNormalsPC3d(_cld_reshaped, _pointsAndNormals, 12, false, viewpoint);
Mat(_pointsAndNormals.colRange(3,6)).copyTo(normals);
normals = normals.reshape(3, num_points);
normals = normals.t();
}
for (unsigned i = 0; i < max_iters; ++i) {
vector<unsigned> current_model_inliers;
SACModel model;
for (unsigned j = 0; j < num_rnd_model_points;) {
std::swap(indices[j], indices[rng.uniform(0, num_points)]);
j++;
}
for (unsigned j = 0; j < num_rnd_model_points; j++) {
unsigned idx = indices[j];
current_model_inliers.emplace_back(idx);
}
Point3d center;
vector<double> coefficients;
bool valid_model = getCylinderFromPoints(cloud, normals, current_model_inliers, coefficients);
if (!valid_model) continue;
SACCylinderModel cylinderModel (coefficients);
pair<double, double> result = cylinderModel.getInliers(cloud, normals, indices, threshold, current_model_inliers, normal_distance_weight_);
// Compare fitness first.
if (bestResult.first < result.first || (bestResult.first == result.first && bestResult.second > result.second)) {
// if (bestResult.first == result.first && bestModel.ModelCoefficients.size() == 7) continue;
bestResult = result;
bestModel.ModelCoefficients = cylinderModel.ModelCoefficients;
bestModel.ModelCoefficients = cylinderModel.ModelCoefficients;
inliers_indices = current_model_inliers;
cout << bestResult.first << endl;
}
}
if (bestModel.ModelCoefficients.size()) {
inliers.push_back(inliers_indices);
model_instances.push_back(bestModel);
return true;
}
}
return false;
}
void SACModelFitting::segment(float remaining_cloud_threshold /*=0.3*/) {
unsigned num_points = cloud.cols;
std::vector<unsigned> indices (num_points);
std::iota(std::begin(indices), std::end(indices), 0);
std::vector<int> point_labels (num_points, -1);
long num_segmented_points = 0;
int label = 0;
while ( (float) num_segmented_points / num_points < (1 - remaining_cloud_threshold )) {
label = label + 1;
bool successful_fitting = fit_once(point_labels);
if (!successful_fitting) {
cout << "Could not fit the required model" << endl;
break;
}
vector<unsigned> latest_model_inliers = inliers.back();
num_segmented_points += latest_model_inliers.size();
// This loop is for implementation purposes only, and maps each point to a label.
// All the points still labelled with -1 are non-segmented.
// This way, complexity of the finding non-segmented is decreased to O(n).
for(unsigned long i = 0; i < latest_model_inliers.size(); i++)
{
point_labels[latest_model_inliers[i]] = label;
}
label++;
}
}
void SACModelFitting::set_threshold (double threshold_value) {
threshold = threshold_value;
}
void SACModelFitting::set_iterations (long unsigned iterations) {
max_iters = iterations;
}
void SACModelFitting::set_normal_distance_weight(double weight) {
if (weight > 1) {
normal_distance_weight_ = 1;
} else if (weight < 0) {
normal_distance_weight_ = 0;
} else {
normal_distance_weight_ = weight;
}
}
} // ptcloud
} // cv

@ -0,0 +1,9 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
CV_TEST_MAIN("",
cvtest::addDataSearchSubDirectory("contrib"),
cvtest::addDataSearchSubDirectory("contrib/ptcloud")
)

@ -0,0 +1,15 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef __OPENCV_TEST_PTCLOUD_PRECOMP_HPP__
#define __OPENCV_TEST_PTCLOUD_PRECOMP_HPP__
#include "opencv2/core.hpp"
#include "opencv2/ts.hpp"
#include "opencv2/ptcloud.hpp"
namespace opencv_test {
using namespace cv::ptcloud;
}
#endif
Loading…
Cancel
Save