Add benchmark code for the Chars74k dataset. Using the CNN character classifier reaches 75% and 84% accuracy for case-sensitive and case-insensitive recognition respectively.
parent
0be529da05
commit
45f4bd9828
1 changed files with 129 additions and 0 deletions
@ -0,0 +1,129 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2014, Itseez Inc, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Itseez Inc or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "opencv2/datasets/tr_chars.hpp" |
||||
|
||||
#include <opencv2/core.hpp> |
||||
|
||||
#include "opencv2/text.hpp" |
||||
#include "opencv2/imgproc.hpp" |
||||
#include "opencv2/imgcodecs.hpp" |
||||
|
||||
#include <cstdio> |
||||
#include <cstdlib> // atoi |
||||
|
||||
#include <string> |
||||
#include <vector> |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
using namespace cv::datasets; |
||||
using namespace cv::text; |
||||
|
||||
int main(int argc, char *argv[]) |
||||
{ |
||||
const char *keys = |
||||
"{ help h usage ? | | show this message }" |
||||
"{ path p |true| path to dataset description file ( list_English_Img.m ) and Img folder.}"; |
||||
CommandLineParser parser(argc, argv, keys); |
||||
string path(parser.get<string>("path")); |
||||
if (parser.has("help") || path=="true") |
||||
{ |
||||
parser.printMessage(); |
||||
return -1; |
||||
} |
||||
|
||||
Ptr<TR_chars> dataset = TR_chars::create(); |
||||
dataset->load(path); |
||||
|
||||
// ***************
|
||||
// dataset. train, test contain information about each element of appropriate sets and splits.
|
||||
// For example, let output first elements of these vectors and their sizes for last split.
|
||||
// And number of splits.
|
||||
int numSplits = dataset->getNumSplits(); |
||||
printf("splits number: %u\n", numSplits); |
||||
|
||||
vector< Ptr<Object> > &currTrain = dataset->getTrain(numSplits-1); |
||||
vector< Ptr<Object> > &currTest = dataset->getTest(numSplits-1); |
||||
vector< Ptr<Object> > &currValidation = dataset->getValidation(numSplits-1); |
||||
printf("train size: %u\n", (unsigned int)currTrain.size()); |
||||
printf("test size: %u\n", (unsigned int)currTest.size()); |
||||
printf("validation size: %u\n", (unsigned int)currValidation.size()); |
||||
|
||||
|
||||
// WARNING: The order of classes' labels is different in Chars74k and in the output of our classifier
|
||||
string src_classes = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; // labels order as in the clasifier output
|
||||
string tar_classes = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; // labels order as in the Chars74k dataset
|
||||
|
||||
Ptr<OCRHMMDecoder::ClassifierCallback> ocr = loadOCRHMMClassifierCNN("OCRBeamSearch_CNN_model_data.xml.gz"); |
||||
|
||||
int numOK = 0; |
||||
int upperNumOK = 0; |
||||
|
||||
for (unsigned int i=0; i<(unsigned int)currTest.size(); i++) |
||||
{ |
||||
TR_charsObj *exampleTest = static_cast<TR_charsObj *>(currTest[i].get()); |
||||
printf("processed image: %u, name: %s\n", i, exampleTest->imgName.c_str()); |
||||
printf(" label: %u,", exampleTest->label); |
||||
|
||||
string imfilename = path+string("/Img/")+exampleTest->imgName.c_str()+string(".png"); |
||||
Mat image = imread(imfilename); |
||||
vector<int> out_classes; |
||||
vector<double> out_confidences; |
||||
ocr->eval(image, out_classes, out_confidences); |
||||
int prediction = 1 + tar_classes.find_first_of(src_classes[out_classes[0]]); |
||||
printf(" prediction: %u\n", prediction); |
||||
|
||||
if (exampleTest->label == prediction) |
||||
numOK++; |
||||
|
||||
char l = tar_classes[exampleTest->label]; |
||||
char p = tar_classes[prediction]; |
||||
if (toupper(l) == toupper(p)) |
||||
upperNumOK++; |
||||
} |
||||
|
||||
printf("\n---------------------------------------------\n"); |
||||
printf("Chars74k Classification Accuracy (case-sensitive): %f\n",(float)numOK/currTest.size()); |
||||
printf("Chars74k Classification Accuracy (case-insensitive): %f\n",(float)upperNumOK/currTest.size()); |
||||
|
||||
return 0; |
||||
} |
Loading…
Reference in new issue