+ add KCF Tracker, initial commit, added: tutorial, trackerKCF.cpp, modified: tracker.cpp, tracker.hpp
parent
36fbabf267
commit
43e71214c8
4 changed files with 640 additions and 0 deletions
@ -0,0 +1,135 @@ |
||||
|
||||
/*---------------STEP 1---------------------*/ |
||||
/* modify this file |
||||
* opencv2/tracking/tracker.hpp |
||||
* and put several lines of snippet similar to |
||||
* the following: |
||||
*/ |
||||
/*------------------------------------------*/ |
||||
|
||||
class CV_EXPORTS_W TrackerKCF : public Tracker |
||||
{ |
||||
public: |
||||
struct CV_EXPORTS Params |
||||
{ |
||||
Params(); |
||||
void read( const FileNode& /*fn*/ ); |
||||
void write( FileStorage& /*fs*/ ) const; |
||||
}; |
||||
|
||||
/** @brief Constructor |
||||
@param parameters KCF parameters TrackerKCF::Params |
||||
*/ |
||||
BOILERPLATE_CODE("KCF",TrackerKCF); |
||||
}; |
||||
|
||||
|
||||
/*---------------STEP 2---------------------*/ |
||||
/* modify this file |
||||
* src/tracker.cpp |
||||
* add one line in function |
||||
* Ptr<Tracker> Tracker::create( const String& trackerType ) |
||||
*/ |
||||
/*------------------------------------------*/ |
||||
|
||||
Ptr<Tracker> Tracker::create( const String& trackerType ) |
||||
{ |
||||
BOILERPLATE_CODE("MIL",TrackerMIL); |
||||
BOILERPLATE_CODE("BOOSTING",TrackerBoosting); |
||||
BOILERPLATE_CODE("MEDIANFLOW",TrackerMedianFlow); |
||||
BOILERPLATE_CODE("TLD",TrackerTLD); |
||||
BOILERPLATE_CODE("KCF",TrackerKCF); // add this line! |
||||
return Ptr<Tracker>(); |
||||
} |
||||
|
||||
|
||||
/*---------------STEP 3---------------------*/ |
||||
/* make a new file and paste the snippet below |
||||
* and modify it according to your needs. |
||||
* also make sure to put the LICENSE part. |
||||
* src/trackerKCF.cpp |
||||
*/ |
||||
/*------------------------------------------*/ |
||||
|
||||
/*--------------------------- |
||||
| TrackerKCFModel |
||||
|---------------------------*/ |
||||
namespace cv{ |
||||
/** |
||||
* \brief Implementation of TrackerModel for MIL algorithm |
||||
*/ |
||||
class TrackerKCFModel : public TrackerModel{ |
||||
public: |
||||
TrackerKCFModel(TrackerKCF::Params /*params*/){} |
||||
~TrackerKCFModel(){} |
||||
protected: |
||||
void modelEstimationImpl( const std::vector<Mat>& responses ){} |
||||
void modelUpdateImpl(){} |
||||
}; |
||||
} /* namespace cv */ |
||||
|
||||
|
||||
/*--------------------------- |
||||
| TrackerKCF |
||||
|---------------------------*/ |
||||
namespace cv{ |
||||
|
||||
/* |
||||
* Prototype |
||||
*/ |
||||
class TrackerKCFImpl : public TrackerKCF{ |
||||
public: |
||||
TrackerKCFImpl( const TrackerKCF::Params ¶meters = TrackerKCF::Params() ); |
||||
void read( const FileNode& fn ); |
||||
void write( FileStorage& fs ) const; |
||||
|
||||
protected: |
||||
bool initImpl( const Mat& image, const Rect2d& boundingBox ); |
||||
bool updateImpl( const Mat& image, Rect2d& boundingBox ); |
||||
|
||||
TrackerKCF::Params params; |
||||
}; |
||||
|
||||
/* |
||||
* Constructor |
||||
*/ |
||||
Ptr<TrackerKCF> TrackerKCF::createTracker(const TrackerKCF::Params ¶meters){ |
||||
return Ptr<TrackerKCFImpl>(new TrackerKCFImpl(parameters)); |
||||
} |
||||
TrackerKCFImpl::TrackerKCFImpl( const TrackerKCF::Params ¶meters ) : |
||||
params( parameters ) |
||||
{ |
||||
isInit = false; |
||||
} |
||||
|
||||
void TrackerKCFImpl::read( const cv::FileNode& fn ){ |
||||
params.read( fn ); |
||||
} |
||||
|
||||
void TrackerKCFImpl::write( cv::FileStorage& fs ) const{ |
||||
params.write( fs ); |
||||
} |
||||
|
||||
|
||||
bool TrackerKCFImpl::initImpl( const Mat& image, const Rect2d& boundingBox ){ |
||||
model=Ptr<TrackerKCFModel>(new TrackerKCFModel(params)); |
||||
return true; |
||||
} |
||||
bool TrackerKCFImpl::updateImpl( const Mat& image, Rect2d& boundingBox ){return true;} |
||||
|
||||
/* |
||||
* Parameters |
||||
*/ |
||||
TrackerKCF::Params::Params(){ |
||||
|
||||
} |
||||
|
||||
void TrackerKCF::Params::read( const cv::FileNode& fn ){ |
||||
|
||||
} |
||||
|
||||
void TrackerKCF::Params::write( cv::FileStorage& fs ) const{ |
||||
|
||||
} |
||||
|
||||
} /* namespace cv */ |
@ -0,0 +1,472 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
#include <complex> |
||||
|
||||
/*---------------------------
|
||||
| TrackerKCFModel |
||||
|---------------------------*/ |
||||
namespace cv{ |
||||
/**
|
||||
* \brief Implementation of TrackerModel for MIL algorithm |
||||
*/ |
||||
class TrackerKCFModel : public TrackerModel{ |
||||
public: |
||||
TrackerKCFModel(TrackerKCF::Params /*params*/){} |
||||
~TrackerKCFModel(){} |
||||
protected: |
||||
void modelEstimationImpl( const std::vector<Mat>& responses ){} |
||||
void modelUpdateImpl(){} |
||||
}; |
||||
} /* namespace cv */ |
||||
|
||||
|
||||
/*---------------------------
|
||||
| TrackerKCF |
||||
|---------------------------*/ |
||||
namespace cv{ |
||||
|
||||
/*
|
||||
* Prototype |
||||
*/ |
||||
class TrackerKCFImpl : public TrackerKCF{ |
||||
public: |
||||
TrackerKCFImpl( const TrackerKCF::Params ¶meters = TrackerKCF::Params() ); |
||||
void read( const FileNode& fn ); |
||||
void write( FileStorage& fs ) const; |
||||
|
||||
protected: |
||||
/*
|
||||
* basic functions and vars |
||||
*/ |
||||
bool initImpl( const Mat& image, const Rect2d& boundingBox ); |
||||
bool updateImpl( const Mat& image, Rect2d& boundingBox ); |
||||
|
||||
TrackerKCF::Params params; |
||||
|
||||
/*
|
||||
* KCF functions and vars |
||||
*/ |
||||
void createHanningWindow(OutputArray _dst, cv::Size winSize, int type); |
||||
void inline fft2(Mat src, Mat & dest); |
||||
void inline ifft2(Mat src, Mat & dest);
|
||||
void getSubWindow(Mat img, Rect roi, Mat& patch); |
||||
void denseGaussKernel(double sigma, Mat x, Mat y, Mat & k); |
||||
void calcResponse(Mat alphaf, Mat k, Mat & response); |
||||
|
||||
void shiftRows(Mat& mat);
|
||||
void shiftRows(Mat& mat,int n); |
||||
void shiftCols(Mat& mat, int n); |
||||
|
||||
private: |
||||
double output_sigma; |
||||
Rect2d roi; |
||||
Mat hann; //hann window filter
|
||||
|
||||
Mat y,yf; // training response and its FFT
|
||||
Mat x,xf; // observation and its FFT
|
||||
Mat k,kf; // dense gaussian kernel and its FFT
|
||||
Mat new_alphaf, alphaf; // learning rate
|
||||
Mat z, new_z; |
||||
Mat response; // detection result
|
||||
|
||||
int frame; |
||||
}; |
||||
|
||||
/*
|
||||
* Constructor |
||||
*/ |
||||
Ptr<TrackerKCF> TrackerKCF::createTracker(const TrackerKCF::Params ¶meters){ |
||||
return Ptr<TrackerKCFImpl>(new TrackerKCFImpl(parameters)); |
||||
} |
||||
TrackerKCFImpl::TrackerKCFImpl( const TrackerKCF::Params ¶meters ) : |
||||
params( parameters ) |
||||
{ |
||||
isInit = false; |
||||
} |
||||
|
||||
void TrackerKCFImpl::read( const cv::FileNode& fn ){ |
||||
params.read( fn ); |
||||
} |
||||
|
||||
void TrackerKCFImpl::write( cv::FileStorage& fs ) const{ |
||||
params.write( fs ); |
||||
} |
||||
|
||||
/*
|
||||
* Initialization:
|
||||
* - creating hann window filter |
||||
* - ROI padding |
||||
* - creating a gaussian response for the training ground-truth |
||||
* - perform FFT to the gaussian response |
||||
*/ |
||||
bool TrackerKCFImpl::initImpl( const Mat& image, const Rect2d& boundingBox ){ |
||||
frame=0; |
||||
|
||||
roi = boundingBox; |
||||
|
||||
//calclulate output sigma
|
||||
output_sigma=sqrt(roi.width*roi.height)*params.output_sigma_factor; |
||||
output_sigma=-0.5/(output_sigma*output_sigma); |
||||
|
||||
// add padding to the roi
|
||||
roi.x-=roi.width/2; |
||||
roi.y-=roi.height/2+1; |
||||
roi.width*=2; |
||||
roi.height*=2; |
||||
|
||||
// initialize the hann window filter
|
||||
createHanningWindow(hann, roi.size(), CV_64F); |
||||
|
||||
// create gaussian response
|
||||
y=Mat::zeros(roi.height,roi.width,CV_64F); |
||||
for(unsigned i=0;i<roi.height;i++){ |
||||
for(unsigned j=0;j<roi.width;j++){ |
||||
y.at<double>(i,j)=(i-roi.height/2+1)*(i-roi.height/2+1)+(j-roi.width/2+1)*(j-roi.width/2+1); |
||||
} |
||||
} |
||||
|
||||
y*=(double)output_sigma; |
||||
cv::exp(y,y); |
||||
|
||||
// perform fourier transfor to the gaussian response
|
||||
fft2(y,yf); |
||||
|
||||
model=Ptr<TrackerKCFModel>(new TrackerKCFModel(params)); |
||||
|
||||
// TODO: return true only if roi inside the image
|
||||
return true; |
||||
} |
||||
|
||||
/*
|
||||
* Main part of the KCF algorithm |
||||
*/ |
||||
bool TrackerKCFImpl::updateImpl( const Mat& image, Rect2d& boundingBox ){ |
||||
double minVal, maxVal; // min-max response
|
||||
Point minLoc,maxLoc; // min-max location
|
||||
|
||||
Mat img; |
||||
// check the channels of the input image, grayscale is preferred
|
||||
CV_Assert(image.channels() == 1 || image.channels() == 3); |
||||
if(image.channels()>1){ |
||||
cvtColor(image,img, CV_BGR2GRAY); |
||||
}else img=image; |
||||
|
||||
// extract and pre-process the patch
|
||||
getSubWindow(img,roi, x); |
||||
|
||||
// detection part
|
||||
if(frame>0){ |
||||
denseGaussKernel(params.sigma,x,z,k); |
||||
calcResponse(alphaf,k,response); |
||||
minMaxLoc( response, &minVal, &maxVal, &minLoc, &maxLoc ); |
||||
roi.x+=(maxLoc.x-roi.width/2+1);roi.y+=(maxLoc.y-roi.height/2+1); |
||||
|
||||
// update the bounding box
|
||||
boundingBox.x=roi.x+boundingBox.width/2; |
||||
boundingBox.y=roi.y+boundingBox.height/2; |
||||
} |
||||
|
||||
// extract the patch for learning purpose
|
||||
getSubWindow(img,roi, x); |
||||
|
||||
// Kernel Regularized Least-Squares, calculate alphas
|
||||
denseGaussKernel(params.sigma,x,x,k); |
||||
fft2(k,kf); |
||||
kf=kf+params.lambda; |
||||
|
||||
/* TODO: optimize this element-wise division
|
||||
* new_alphaf=yf./kf |
||||
* z=[(ax+bd)+i(bc-ad)]/(c^2+d^2) |
||||
*/
|
||||
new_alphaf=Mat_<Vec2d >(yf.rows, yf.cols);
|
||||
std::complex<double> temp; |
||||
for(int i=0;i<yf.rows;i++){ |
||||
for(int j=0;j<yf.cols;j++){ |
||||
temp=std::complex<double>(yf.at<Vec2d>(i,j)[0],yf.at<Vec2d>(i,j)[1])/(std::complex<double>(kf.at<Vec2d>(i,j)[0],kf.at<Vec2d>(i,j)[1])/*+complex<float>(0.0000000001,0.0000000001)*/); |
||||
new_alphaf.at<Vec2d >(i,j)[0]=temp.real(); |
||||
new_alphaf.at<Vec2d >(i,j)[1]=temp.imag(); |
||||
} |
||||
} |
||||
|
||||
// update the learning model
|
||||
new_z=x.clone(); |
||||
if(frame==0){ |
||||
alphaf=new_alphaf.clone(); |
||||
z=x; |
||||
}else{ |
||||
alphaf=(1.0-params.interp_factor)*alphaf+params.interp_factor*new_alphaf; |
||||
z=(1.0-params.interp_factor)*z+params.interp_factor*new_z; |
||||
} |
||||
|
||||
frame++; |
||||
return true; |
||||
} |
||||
|
||||
|
||||
/*-------------------------------------
|
||||
| implementation of the KCF functions |
||||
|-------------------------------------*/ |
||||
|
||||
/*
|
||||
* hann window filter |
||||
*/ |
||||
void TrackerKCFImpl::createHanningWindow(OutputArray _dst, cv::Size winSize, int type){ |
||||
CV_Assert( type == CV_32FC1 || type == CV_64FC1 ); |
||||
|
||||
_dst.create(winSize, type); |
||||
Mat dst = _dst.getMat(); |
||||
|
||||
int rows = dst.rows, cols = dst.cols; |
||||
|
||||
AutoBuffer<double> _wc(cols); |
||||
double * const wc = (double *)_wc; |
||||
|
||||
double coeff0 = 2.0 * CV_PI / (double)(cols - 1), coeff1 = 2.0f * CV_PI / (double)(rows - 1); |
||||
for(int j = 0; j < cols; j++) |
||||
wc[j] = 0.5 * (1.0 - cos(coeff0 * j)); |
||||
|
||||
if(dst.depth() == CV_32F) |
||||
{ |
||||
for(int i = 0; i < rows; i++) |
||||
{ |
||||
float* dstData = dst.ptr<float>(i); |
||||
double wr = 0.5 * (1.0 - cos(coeff1 * i)); |
||||
for(int j = 0; j < cols; j++) |
||||
dstData[j] = (float)(wr * wc[j]); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
for(int i = 0; i < rows; i++) |
||||
{ |
||||
double* dstData = dst.ptr<double>(i); |
||||
double wr = 0.5 * (1.0 - cos(coeff1 * i)); |
||||
for(int j = 0; j < cols; j++) |
||||
dstData[j] = wr * wc[j]; |
||||
} |
||||
} |
||||
|
||||
// perform batch sqrt for SSE performance gains
|
||||
//cv::sqrt(dst, dst); //matlab do not use the square rooted version
|
||||
} |
||||
|
||||
/*
|
||||
* simplification of fourier transoform function in opencv |
||||
*/ |
||||
void inline TrackerKCFImpl::fft2(Mat src, Mat & dest){ |
||||
Mat planes[] = {Mat_<double>(src), Mat::zeros(src.size(), CV_64F)}; |
||||
merge(planes, 2, dest);
|
||||
dft(dest,dest,DFT_COMPLEX_OUTPUT); |
||||
} |
||||
|
||||
/*
|
||||
* simplification of inverse fourier transoform function in opencv |
||||
*/ |
||||
void inline TrackerKCFImpl::ifft2(Mat src, Mat & dest){ |
||||
idft(src,dest,DFT_SCALE+DFT_REAL_OUTPUT); |
||||
} |
||||
|
||||
/*
|
||||
* obtain the patch and apply hann window filter to it |
||||
* TODO: return false if roi is outside the image, now it produce ERROR! |
||||
*/ |
||||
void TrackerKCFImpl::getSubWindow(Mat img, Rect roi, Mat& patch){ |
||||
|
||||
Rect region=roi; |
||||
|
||||
// extract patch inside the image
|
||||
if(roi.x<0){region.x=0;region.width+=roi.x;} |
||||
if(roi.y<0){region.y=0;region.height+=roi.y;} |
||||
if(roi.x+roi.width>img.cols)region.width=img.cols-roi.x; |
||||
if(roi.y+roi.height>img.rows)region.height=img.rows-roi.y; |
||||
if(region.width>img.cols)region.width=img.cols; |
||||
if(region.height>img.rows)region.height=img.rows; |
||||
|
||||
patch=img(region).clone(); |
||||
|
||||
// add some padding to compensate when the patch is outside image border
|
||||
int addTop,addBottom, addLeft, addRight; |
||||
addTop=region.y-roi.y; |
||||
addBottom=(roi.height+roi.y>img.rows?roi.height+roi.y-img.rows:0); |
||||
addLeft=region.x-roi.x; |
||||
addRight=(roi.width+roi.x>img.cols?roi.width+roi.x-img.cols:0); |
||||
|
||||
copyMakeBorder(patch,patch,addTop,addBottom,addLeft,addRight,BORDER_REPLICATE); |
||||
|
||||
patch.convertTo(patch,CV_64F); |
||||
|
||||
patch=patch/255.0-0.5; // normalize to range -0.5 .. 0.5
|
||||
patch=patch.mul(hann); // hann window filter
|
||||
|
||||
} |
||||
|
||||
/*
|
||||
* dense gauss kernel function |
||||
*/ |
||||
void TrackerKCFImpl::denseGaussKernel(double sigma, Mat x, Mat y, Mat & k){ |
||||
Mat xf, yf, xyf,xy; |
||||
double normX, normY; |
||||
|
||||
fft2(x,xf); |
||||
fft2(y,yf); |
||||
normX=norm(x); |
||||
normX*=normX; |
||||
normY=norm(y); |
||||
normY*=normY; |
||||
|
||||
mulSpectrums(xf,yf,xyf,0,true); |
||||
|
||||
ifft2(xyf,xyf); |
||||
shiftRows(xyf, x.rows/2); |
||||
shiftCols(xyf,x.cols/2); |
||||
|
||||
//(xx + yy - 2 * xy) / numel(x)
|
||||
xy=(normX+normY-2*xyf)/(x.rows*x.cols); |
||||
|
||||
|
||||
// TODO: check wether we really need thresholding or not
|
||||
//threshold(xy,xy,0.0,0.0,THRESH_TOZERO);//max(0, (xx + yy - 2 * xy) / numel(x))
|
||||
for(unsigned i=0;i<xy.rows;i++){ |
||||
for(unsigned j=0;j<xy.cols;j++){ |
||||
if(xy.at<double>(i,j)<0.0)xy.at<double>(i,j)=0.0; |
||||
} |
||||
} |
||||
|
||||
double sig=-1.0/(sigma*sigma); |
||||
xy=sig*xy; |
||||
exp(xy,k); |
||||
|
||||
} |
||||
|
||||
/* CIRCULAR SHIT Function
|
||||
* http://stackoverflow.com/questions/10420454/shift-like-matlab-function-rows-or-columns-of-a-matrix-in-opencv
|
||||
*/ |
||||
// circular shift one row from up to down
|
||||
void TrackerKCFImpl::shiftRows(Mat& mat) { |
||||
|
||||
Mat temp; |
||||
Mat m; |
||||
int k = (mat.rows-1); |
||||
mat.row(k).copyTo(temp); |
||||
for(; k > 0 ; k-- ) { |
||||
m = mat.row(k); |
||||
mat.row(k-1).copyTo(m); |
||||
} |
||||
m = mat.row(0); |
||||
temp.copyTo(m); |
||||
|
||||
} |
||||
|
||||
// circular shift n rows from up to down if n > 0, -n rows from down to up if n < 0
|
||||
void TrackerKCFImpl::shiftRows(Mat& mat,int n) { |
||||
|
||||
if( n < 0 ) { |
||||
|
||||
n = -n; |
||||
flip(mat,mat,0); |
||||
for(int k=0; k < n;k++) { |
||||
shiftRows(mat); |
||||
} |
||||
flip(mat,mat,0); |
||||
|
||||
} else { |
||||
|
||||
for(int k=0; k < n;k++) { |
||||
shiftRows(mat); |
||||
} |
||||
} |
||||
|
||||
} |
||||
|
||||
//circular shift n columns from left to right if n > 0, -n columns from right to left if n < 0
|
||||
void TrackerKCFImpl::shiftCols(Mat& mat, int n) { |
||||
|
||||
if(n < 0){ |
||||
|
||||
n = -n; |
||||
flip(mat,mat,1); |
||||
transpose(mat,mat); |
||||
shiftRows(mat,n); |
||||
transpose(mat,mat); |
||||
flip(mat,mat,1); |
||||
|
||||
} else { |
||||
|
||||
transpose(mat,mat); |
||||
shiftRows(mat,n); |
||||
transpose(mat,mat); |
||||
} |
||||
} |
||||
|
||||
/*
|
||||
* calculate the detection response |
||||
*/ |
||||
void TrackerKCFImpl::calcResponse(Mat alphaf, Mat k, Mat & response){ |
||||
//alpha f--> 2channels ; k --> 1 channel;
|
||||
Mat kf; |
||||
fft2(k,kf); |
||||
Mat spec; |
||||
mulSpectrums(alphaf,kf,spec,0,false); |
||||
ifft2(spec,response); |
||||
} |
||||
/*----------------------------------------------------------------------*/ |
||||
|
||||
/*
|
||||
* Parameters |
||||
*/ |
||||
TrackerKCF::Params::Params(){ |
||||
sigma=0.2; |
||||
lambda=0.01; |
||||
interp_factor=0.075; |
||||
output_sigma_factor=1.0/16.0; |
||||
} |
||||
|
||||
void TrackerKCF::Params::read( const cv::FileNode& fn ){ |
||||
|
||||
} |
||||
|
||||
void TrackerKCF::Params::write( cv::FileStorage& fs ) const{ |
||||
|
||||
} |
||||
|
||||
} /* namespace cv */ |
Loading…
Reference in new issue