erGrouping python bindings and sample script textdetection.py which mimics the same detection pipeline as in textdetection.cpp

pull/528/head
lluisgomez 9 years ago
parent 7aedcae1ec
commit 4092d2efe3
  1. 9
      modules/text/include/opencv2/text/erfilter.hpp
  2. 8
      modules/text/samples/detect_er_chars.py
  3. 59
      modules/text/samples/textdetection.py
  4. 22
      modules/text/src/erfilter.cpp

@ -264,7 +264,7 @@ channels (Grad) are used in order to obtain high localization recall. This imple
provides an alternative combination of red (R), green (G), blue (B), lightness (L), and gradient provides an alternative combination of red (R), green (G), blue (B), lightness (L), and gradient
magnitude (Grad). magnitude (Grad).
*/ */
CV_EXPORTS void computeNMChannels(InputArray _src, OutputArrayOfArrays _channels, int _mode = ERFILTER_NM_RGBLGrad); CV_EXPORTS_W void computeNMChannels(InputArray _src, CV_OUT OutputArrayOfArrays _channels, int _mode = ERFILTER_NM_RGBLGrad);
@ -324,6 +324,13 @@ CV_EXPORTS void erGrouping(InputArray img, InputArrayOfArrays channels,
const std::string& filename = std::string(), const std::string& filename = std::string(),
float minProbablity = 0.5); float minProbablity = 0.5);
CV_EXPORTS_W void erGrouping(InputArray image, InputArray channel,
std::vector<std::vector<Point> > regions,
CV_OUT std::vector<Rect> &groups_rects,
int method = ERGROUPING_ORIENTATION_HORIZ,
const String& filename = String(),
float minProbablity = (float)0.5);
/** @brief Converts MSER contours (vector\<Point\>) to ERStat regions. /** @brief Converts MSER contours (vector\<Point\>) to ERStat regions.
@param image Source image CV_8UC1 from which the MSERs where extracted. @param image Source image CV_8UC1 from which the MSERs where extracted.

@ -7,13 +7,13 @@ import cv2
import numpy as np import numpy as np
from matplotlib import pyplot as plt from matplotlib import pyplot as plt
print '\ndetect_er_chars.py' print('\ndetect_er_chars.py')
print ' A simple demo script using the Extremal Region Filter algorithm described in:' print(' A simple demo script using the Extremal Region Filter algorithm described in:')
print ' Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012\n' print(' Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012\n')
if (len(sys.argv) < 2): if (len(sys.argv) < 2):
print ' (ERROR) You must call this script with an argument (path_to_image_to_be_processed)\n' print(' (ERROR) You must call this script with an argument (path_to_image_to_be_processed)\n')
quit() quit()
pathname = os.path.dirname(sys.argv[0]) pathname = os.path.dirname(sys.argv[0])

@ -0,0 +1,59 @@
#!/usr/bin/python
import sys
import os
import cv2
import numpy as np
from matplotlib import pyplot as plt
print('\ntextdetection.py')
print(' A demo script of the Extremal Region Filter algorithm described in:')
print(' Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012\n')
if (len(sys.argv) < 2):
print(' (ERROR) You must call this script with an argument (path_to_image_to_be_processed)\n')
quit()
pathname = os.path.dirname(sys.argv[0])
img = cv2.imread(str(sys.argv[1]))
vis = img.copy() # for visualization
# Extract channels to be processed individually
channels = cv2.text.computeNMChannels(img)
# Append negative channels to detect ER- (bright regions over dark background)
cn = len(channels)-1
for c in range(0,cn):
channels.append((255-channels[c]))
# Apply the default cascade classifier to each independent channel (could be done in parallel)
print("Extracting Class Specific Extremal Regions from "+str(len(channels))+" channels ...")
print(" (...) this may take a while (...)")
for channel in channels:
erc1 = cv2.text.loadClassifierNM1(pathname+'/trained_classifierNM1.xml')
er1 = cv2.text.createERFilterNM1(erc1,16,0.00015,0.13,0.2,True,0.1)
erc2 = cv2.text.loadClassifierNM2(pathname+'/trained_classifierNM2.xml')
er2 = cv2.text.createERFilterNM2(erc2,0.5)
regions = cv2.text.detectRegions(channel,er1,er2)
rects = cv2.text.erGrouping(img,channel,[r.tolist() for r in regions])
#rects = cv2.text.erGrouping(img,gray,[x.tolist() for x in regions], cv2.text.ERGROUPING_ORIENTATION_ANY,'../../GSoC2014/opencv_contrib/modules/text/samples/trained_classifier_erGrouping.xml',0.5)
#Visualization
for r in range(0,np.shape(rects)[0]):
rect = rects[r]
cv2.rectangle(vis, (rect[0],rect[1]), (rect[0]+rect[2],rect[1]+rect[3]), (0, 255, 255), 2)
#Visualization
vis = vis[:,:,::-1] #flip the colors dimension from BGR to RGB
plt.imshow(vis)
plt.xticks([]), plt.yticks([]) # to hide tick values on X and Y axis
plt.show()

@ -1236,7 +1236,7 @@ void get_gradient_magnitude(Mat& _grey_img, Mat& _gradient_magnitude)
ERFILTER_NM_RGBLGrad and ERFILTER_NM_IHSGrad. ERFILTER_NM_RGBLGrad and ERFILTER_NM_IHSGrad.
*/ */
void computeNMChannels(InputArray _src, OutputArrayOfArrays _channels, int _mode) void computeNMChannels(InputArray _src, CV_OUT OutputArrayOfArrays _channels, int _mode)
{ {
CV_Assert( ( _mode == ERFILTER_NM_RGBLGrad ) || ( _mode == ERFILTER_NM_IHSGrad ) ); CV_Assert( ( _mode == ERFILTER_NM_RGBLGrad ) || ( _mode == ERFILTER_NM_IHSGrad ) );
@ -4094,6 +4094,22 @@ void erGrouping(InputArray image, InputArrayOfArrays channels, vector<vector<ERS
} }
void erGrouping(InputArray image, InputArray channel, vector<vector<Point> > contours, CV_OUT std::vector<Rect> &groups_rects, int method, const String& filename, float minProbability)
{
CV_Assert( image.getMat().type() == CV_8UC3 );
CV_Assert( channel.getMat().type() == CV_8UC1 );
CV_Assert( !((method == ERGROUPING_ORIENTATION_ANY) && (filename.empty())) );
vector<Mat> channels;
channels.push_back(channel.getMat());
vector<vector<ERStat> > regions;
MSERsToERStats(channel, contours, regions);
regions.pop_back();
std::vector<std::vector<Vec2i> > groups;
erGrouping(image, channels, regions, groups, groups_rects, method, filename, minProbability);
}
/*! /*!
* MSERsToERStats function converts MSER contours (vector<Point>) to ERStat regions. * MSERsToERStats function converts MSER contours (vector<Point>) to ERStat regions.
* It takes as input the contours provided by the OpenCV MSER feature detector and returns as output two vectors * It takes as input the contours provided by the OpenCV MSER feature detector and returns as output two vectors
@ -4187,7 +4203,7 @@ void detectRegions(InputArray image, const Ptr<ERFilter>& er_filter1, const Ptr<
//Convert each ER to vector<Point> and push it to output regions //Convert each ER to vector<Point> and push it to output regions
Mat src = image.getMat(); Mat src = image.getMat();
Mat region_mask = Mat::zeros(src.rows+2, src.cols+2, CV_8UC1); Mat region_mask = Mat::zeros(src.rows+2, src.cols+2, CV_8UC1);
for (size_t i=0; i < ers.size(); i++) for (size_t i=1; i < ers.size(); i++) //start from 1 to deprecate root region
{ {
ERStat* stat = &ers[i]; ERStat* stat = &ers[i];
@ -4210,7 +4226,7 @@ void detectRegions(InputArray image, const Ptr<ERFilter>& er_filter1, const Ptr<
findContours( region, contours, hierarchy, RETR_TREE, CHAIN_APPROX_NONE, Point(0, 0) ); findContours( region, contours, hierarchy, RETR_TREE, CHAIN_APPROX_NONE, Point(0, 0) );
for (size_t j=0; j < contours[0].size(); j++) for (size_t j=0; j < contours[0].size(); j++)
contours[0][j] += stat->rect.tl(); contours[0][j] += (stat->rect.tl()-Point(1,1));
regions.push_back(contours[0]); regions.push_back(contours[0]);
} }

Loading…
Cancel
Save