erGrouping python bindings and sample script textdetection.py which mimics the same detection pipeline as in textdetection.cpp
parent
7aedcae1ec
commit
4092d2efe3
4 changed files with 91 additions and 9 deletions
@ -0,0 +1,59 @@ |
||||
#!/usr/bin/python |
||||
|
||||
import sys |
||||
import os |
||||
|
||||
import cv2 |
||||
import numpy as np |
||||
from matplotlib import pyplot as plt |
||||
|
||||
print('\ntextdetection.py') |
||||
print(' A demo script of the Extremal Region Filter algorithm described in:') |
||||
print(' Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012\n') |
||||
|
||||
|
||||
if (len(sys.argv) < 2): |
||||
print(' (ERROR) You must call this script with an argument (path_to_image_to_be_processed)\n') |
||||
quit() |
||||
|
||||
pathname = os.path.dirname(sys.argv[0]) |
||||
|
||||
|
||||
img = cv2.imread(str(sys.argv[1])) |
||||
vis = img.copy() # for visualization |
||||
|
||||
|
||||
# Extract channels to be processed individually |
||||
channels = cv2.text.computeNMChannels(img) |
||||
# Append negative channels to detect ER- (bright regions over dark background) |
||||
cn = len(channels)-1 |
||||
for c in range(0,cn): |
||||
channels.append((255-channels[c])) |
||||
|
||||
# Apply the default cascade classifier to each independent channel (could be done in parallel) |
||||
print("Extracting Class Specific Extremal Regions from "+str(len(channels))+" channels ...") |
||||
print(" (...) this may take a while (...)") |
||||
for channel in channels: |
||||
|
||||
erc1 = cv2.text.loadClassifierNM1(pathname+'/trained_classifierNM1.xml') |
||||
er1 = cv2.text.createERFilterNM1(erc1,16,0.00015,0.13,0.2,True,0.1) |
||||
|
||||
erc2 = cv2.text.loadClassifierNM2(pathname+'/trained_classifierNM2.xml') |
||||
er2 = cv2.text.createERFilterNM2(erc2,0.5) |
||||
|
||||
regions = cv2.text.detectRegions(channel,er1,er2) |
||||
|
||||
rects = cv2.text.erGrouping(img,channel,[r.tolist() for r in regions]) |
||||
#rects = cv2.text.erGrouping(img,gray,[x.tolist() for x in regions], cv2.text.ERGROUPING_ORIENTATION_ANY,'../../GSoC2014/opencv_contrib/modules/text/samples/trained_classifier_erGrouping.xml',0.5) |
||||
|
||||
#Visualization |
||||
for r in range(0,np.shape(rects)[0]): |
||||
rect = rects[r] |
||||
cv2.rectangle(vis, (rect[0],rect[1]), (rect[0]+rect[2],rect[1]+rect[3]), (0, 255, 255), 2) |
||||
|
||||
|
||||
#Visualization |
||||
vis = vis[:,:,::-1] #flip the colors dimension from BGR to RGB |
||||
plt.imshow(vis) |
||||
plt.xticks([]), plt.yticks([]) # to hide tick values on X and Y axis |
||||
plt.show() |
Loading…
Reference in new issue