parent
770a8b598f
commit
265a7ad11d
4 changed files with 665 additions and 0 deletions
@ -0,0 +1,155 @@ |
|||||||
|
#include <opencv2/imgproc.hpp> |
||||||
|
#include <opencv2/highgui.hpp> |
||||||
|
#include <opencv2/imgcodecs.hpp> |
||||||
|
#include <opencv2/core/utility.hpp> |
||||||
|
|
||||||
|
#include <opencv2/ximgproc.hpp> |
||||||
|
|
||||||
|
#include <ctype.h> |
||||||
|
#include <stdio.h> |
||||||
|
#include <iostream> |
||||||
|
|
||||||
|
using namespace cv; |
||||||
|
using namespace cv::ximgproc; |
||||||
|
using namespace std; |
||||||
|
|
||||||
|
static void help() |
||||||
|
{ |
||||||
|
cout << "\nThis program demonstrates SEEDS superpixels using OpenCV class SuperpixelSEEDS\n" |
||||||
|
"Use [space] to toggle output mode\n" |
||||||
|
"\n" |
||||||
|
"It captures either from the camera of your choice: 0, 1, ... default 0\n" |
||||||
|
"Or from an input image\n" |
||||||
|
"Call:\n" |
||||||
|
"./seeds [camera #, default 0]\n" |
||||||
|
"./seeds [input image file]\n" << endl; |
||||||
|
} |
||||||
|
|
||||||
|
static const char* window_name = "SEEDS Superpixels"; |
||||||
|
|
||||||
|
static bool init = false; |
||||||
|
|
||||||
|
void trackbarChanged(int pos, void* data) |
||||||
|
{ |
||||||
|
init = false; |
||||||
|
} |
||||||
|
|
||||||
|
|
||||||
|
int main(int argc, char** argv) |
||||||
|
{ |
||||||
|
VideoCapture cap; |
||||||
|
Mat input_image; |
||||||
|
bool use_video_capture = false; |
||||||
|
help(); |
||||||
|
|
||||||
|
if( argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0])) ) |
||||||
|
{ |
||||||
|
cap.open(argc == 2 ? argv[1][0] - '0' : 0); |
||||||
|
use_video_capture = true; |
||||||
|
} |
||||||
|
else if( argc >= 2 ) |
||||||
|
{ |
||||||
|
input_image = imread(argv[1]); |
||||||
|
} |
||||||
|
|
||||||
|
if( use_video_capture ) |
||||||
|
{ |
||||||
|
if( !cap.isOpened() ) |
||||||
|
{ |
||||||
|
cout << "Could not initialize capturing...\n"; |
||||||
|
return -1; |
||||||
|
} |
||||||
|
} |
||||||
|
else if( input_image.empty() ) |
||||||
|
{ |
||||||
|
cout << "Could not open image...\n"; |
||||||
|
return -1; |
||||||
|
} |
||||||
|
|
||||||
|
namedWindow(window_name, 0); |
||||||
|
int num_iterations = 4; |
||||||
|
int prior = 2; |
||||||
|
bool double_step = false; |
||||||
|
int num_superpixels = 400; |
||||||
|
int num_levels = 4; |
||||||
|
int num_histogram_bins = 5; |
||||||
|
createTrackbar("Number of Superpixels", window_name, &num_superpixels, 1000, trackbarChanged); |
||||||
|
createTrackbar("Smoothing Prior", window_name, &prior, 5, trackbarChanged); |
||||||
|
createTrackbar("Number of Levels", window_name, &num_levels, 10, trackbarChanged); |
||||||
|
createTrackbar("Iterations", window_name, &num_iterations, 12, 0); |
||||||
|
|
||||||
|
Mat result, mask; |
||||||
|
Ptr<SuperpixelSEEDS> seeds; |
||||||
|
int width, height; |
||||||
|
int display_mode = 0; |
||||||
|
|
||||||
|
for (;;) |
||||||
|
{ |
||||||
|
Mat frame; |
||||||
|
if( use_video_capture ) |
||||||
|
cap >> frame; |
||||||
|
else |
||||||
|
input_image.copyTo(frame); |
||||||
|
|
||||||
|
if( frame.empty() ) |
||||||
|
break; |
||||||
|
|
||||||
|
if( !init ) |
||||||
|
{ |
||||||
|
width = frame.size().width; |
||||||
|
height = frame.size().height; |
||||||
|
seeds = createSuperpixelSEEDS(width, height, frame.channels(), num_superpixels, |
||||||
|
num_levels, prior, num_histogram_bins, double_step); |
||||||
|
init = true; |
||||||
|
} |
||||||
|
Mat converted; |
||||||
|
cvtColor(frame, converted, COLOR_BGR2HSV); |
||||||
|
|
||||||
|
double t = (double) getTickCount(); |
||||||
|
|
||||||
|
seeds->iterate(converted, num_iterations); |
||||||
|
result = frame; |
||||||
|
|
||||||
|
t = ((double) getTickCount() - t) / getTickFrequency(); |
||||||
|
printf("SEEDS segmentation took %i ms with %3i superpixels\n", |
||||||
|
(int) (t * 1000), seeds->getNumberOfSuperpixels()); |
||||||
|
|
||||||
|
/* retrieve the segmentation result */ |
||||||
|
Mat labels; |
||||||
|
seeds->getLabels(labels); |
||||||
|
|
||||||
|
/* get the contours for displaying */ |
||||||
|
seeds->getLabelContourMask(mask, false); |
||||||
|
result.setTo(Scalar(0, 0, 255), mask); |
||||||
|
|
||||||
|
/* display output */ |
||||||
|
switch (display_mode) |
||||||
|
{ |
||||||
|
case 0: //superpixel contours
|
||||||
|
imshow(window_name, result); |
||||||
|
break; |
||||||
|
case 1: //mask
|
||||||
|
imshow(window_name, mask); |
||||||
|
break; |
||||||
|
case 2: //labels array
|
||||||
|
{ |
||||||
|
// use the last x bit to determine the color. Note that this does not
|
||||||
|
// guarantee that 2 neighboring superpixels have different colors.
|
||||||
|
const int num_label_bits = 2; |
||||||
|
labels &= (1 << num_label_bits) - 1; |
||||||
|
labels *= 1 << (16 - num_label_bits); |
||||||
|
imshow(window_name, labels); |
||||||
|
} |
||||||
|
break; |
||||||
|
} |
||||||
|
|
||||||
|
|
||||||
|
int c = waitKey(1); |
||||||
|
if( (c & 255) == 'q' || c == 'Q' || (c & 255) == 27 ) |
||||||
|
break; |
||||||
|
else if( (c & 255) == ' ' ) |
||||||
|
display_mode = (display_mode + 1) % 3; |
||||||
|
} |
||||||
|
|
||||||
|
return 0; |
||||||
|
} |
@ -0,0 +1,220 @@ |
|||||||
|
#!/usr/bin/env python |
||||||
|
|
||||||
|
''' |
||||||
|
This module contains some common routines used by other samples. |
||||||
|
''' |
||||||
|
|
||||||
|
import numpy as np |
||||||
|
import cv2 |
||||||
|
|
||||||
|
# built-in modules |
||||||
|
import os |
||||||
|
import itertools as it |
||||||
|
from contextlib import contextmanager |
||||||
|
|
||||||
|
image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm'] |
||||||
|
|
||||||
|
class Bunch(object): |
||||||
|
def __init__(self, **kw): |
||||||
|
self.__dict__.update(kw) |
||||||
|
def __str__(self): |
||||||
|
return str(self.__dict__) |
||||||
|
|
||||||
|
def splitfn(fn): |
||||||
|
path, fn = os.path.split(fn) |
||||||
|
name, ext = os.path.splitext(fn) |
||||||
|
return path, name, ext |
||||||
|
|
||||||
|
def anorm2(a): |
||||||
|
return (a*a).sum(-1) |
||||||
|
def anorm(a): |
||||||
|
return np.sqrt( anorm2(a) ) |
||||||
|
|
||||||
|
def homotrans(H, x, y): |
||||||
|
xs = H[0, 0]*x + H[0, 1]*y + H[0, 2] |
||||||
|
ys = H[1, 0]*x + H[1, 1]*y + H[1, 2] |
||||||
|
s = H[2, 0]*x + H[2, 1]*y + H[2, 2] |
||||||
|
return xs/s, ys/s |
||||||
|
|
||||||
|
def to_rect(a): |
||||||
|
a = np.ravel(a) |
||||||
|
if len(a) == 2: |
||||||
|
a = (0, 0, a[0], a[1]) |
||||||
|
return np.array(a, np.float64).reshape(2, 2) |
||||||
|
|
||||||
|
def rect2rect_mtx(src, dst): |
||||||
|
src, dst = to_rect(src), to_rect(dst) |
||||||
|
cx, cy = (dst[1] - dst[0]) / (src[1] - src[0]) |
||||||
|
tx, ty = dst[0] - src[0] * (cx, cy) |
||||||
|
M = np.float64([[ cx, 0, tx], |
||||||
|
[ 0, cy, ty], |
||||||
|
[ 0, 0, 1]]) |
||||||
|
return M |
||||||
|
|
||||||
|
|
||||||
|
def lookat(eye, target, up = (0, 0, 1)): |
||||||
|
fwd = np.asarray(target, np.float64) - eye |
||||||
|
fwd /= anorm(fwd) |
||||||
|
right = np.cross(fwd, up) |
||||||
|
right /= anorm(right) |
||||||
|
down = np.cross(fwd, right) |
||||||
|
R = np.float64([right, down, fwd]) |
||||||
|
tvec = -np.dot(R, eye) |
||||||
|
return R, tvec |
||||||
|
|
||||||
|
def mtx2rvec(R): |
||||||
|
w, u, vt = cv2.SVDecomp(R - np.eye(3)) |
||||||
|
p = vt[0] + u[:,0]*w[0] # same as np.dot(R, vt[0]) |
||||||
|
c = np.dot(vt[0], p) |
||||||
|
s = np.dot(vt[1], p) |
||||||
|
axis = np.cross(vt[0], vt[1]) |
||||||
|
return axis * np.arctan2(s, c) |
||||||
|
|
||||||
|
def draw_str(dst, (x, y), s): |
||||||
|
cv2.putText(dst, s, (x+1, y+1), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness = 2, lineType=cv2.LINE_AA) |
||||||
|
cv2.putText(dst, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv2.LINE_AA) |
||||||
|
|
||||||
|
class Sketcher: |
||||||
|
def __init__(self, windowname, dests, colors_func): |
||||||
|
self.prev_pt = None |
||||||
|
self.windowname = windowname |
||||||
|
self.dests = dests |
||||||
|
self.colors_func = colors_func |
||||||
|
self.dirty = False |
||||||
|
self.show() |
||||||
|
cv2.setMouseCallback(self.windowname, self.on_mouse) |
||||||
|
|
||||||
|
def show(self): |
||||||
|
cv2.imshow(self.windowname, self.dests[0]) |
||||||
|
|
||||||
|
def on_mouse(self, event, x, y, flags, param): |
||||||
|
pt = (x, y) |
||||||
|
if event == cv2.EVENT_LBUTTONDOWN: |
||||||
|
self.prev_pt = pt |
||||||
|
elif event == cv2.EVENT_LBUTTONUP: |
||||||
|
self.prev_pt = None |
||||||
|
|
||||||
|
if self.prev_pt and flags & cv2.EVENT_FLAG_LBUTTON: |
||||||
|
for dst, color in zip(self.dests, self.colors_func()): |
||||||
|
cv2.line(dst, self.prev_pt, pt, color, 5) |
||||||
|
self.dirty = True |
||||||
|
self.prev_pt = pt |
||||||
|
self.show() |
||||||
|
|
||||||
|
|
||||||
|
# palette data from matplotlib/_cm.py |
||||||
|
_jet_data = {'red': ((0., 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89,1, 1), |
||||||
|
(1, 0.5, 0.5)), |
||||||
|
'green': ((0., 0, 0), (0.125,0, 0), (0.375,1, 1), (0.64,1, 1), |
||||||
|
(0.91,0,0), (1, 0, 0)), |
||||||
|
'blue': ((0., 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65,0, 0), |
||||||
|
(1, 0, 0))} |
||||||
|
|
||||||
|
cmap_data = { 'jet' : _jet_data } |
||||||
|
|
||||||
|
def make_cmap(name, n=256): |
||||||
|
data = cmap_data[name] |
||||||
|
xs = np.linspace(0.0, 1.0, n) |
||||||
|
channels = [] |
||||||
|
eps = 1e-6 |
||||||
|
for ch_name in ['blue', 'green', 'red']: |
||||||
|
ch_data = data[ch_name] |
||||||
|
xp, yp = [], [] |
||||||
|
for x, y1, y2 in ch_data: |
||||||
|
xp += [x, x+eps] |
||||||
|
yp += [y1, y2] |
||||||
|
ch = np.interp(xs, xp, yp) |
||||||
|
channels.append(ch) |
||||||
|
return np.uint8(np.array(channels).T*255) |
||||||
|
|
||||||
|
def nothing(*arg, **kw): |
||||||
|
pass |
||||||
|
|
||||||
|
def clock(): |
||||||
|
return cv2.getTickCount() / cv2.getTickFrequency() |
||||||
|
|
||||||
|
@contextmanager |
||||||
|
def Timer(msg): |
||||||
|
print msg, '...', |
||||||
|
start = clock() |
||||||
|
try: |
||||||
|
yield |
||||||
|
finally: |
||||||
|
print "%.2f ms" % ((clock()-start)*1000) |
||||||
|
|
||||||
|
class StatValue: |
||||||
|
def __init__(self, smooth_coef = 0.5): |
||||||
|
self.value = None |
||||||
|
self.smooth_coef = smooth_coef |
||||||
|
def update(self, v): |
||||||
|
if self.value is None: |
||||||
|
self.value = v |
||||||
|
else: |
||||||
|
c = self.smooth_coef |
||||||
|
self.value = c * self.value + (1.0-c) * v |
||||||
|
|
||||||
|
class RectSelector: |
||||||
|
def __init__(self, win, callback): |
||||||
|
self.win = win |
||||||
|
self.callback = callback |
||||||
|
cv2.setMouseCallback(win, self.onmouse) |
||||||
|
self.drag_start = None |
||||||
|
self.drag_rect = None |
||||||
|
def onmouse(self, event, x, y, flags, param): |
||||||
|
x, y = np.int16([x, y]) # BUG |
||||||
|
if event == cv2.EVENT_LBUTTONDOWN: |
||||||
|
self.drag_start = (x, y) |
||||||
|
if self.drag_start: |
||||||
|
if flags & cv2.EVENT_FLAG_LBUTTON: |
||||||
|
xo, yo = self.drag_start |
||||||
|
x0, y0 = np.minimum([xo, yo], [x, y]) |
||||||
|
x1, y1 = np.maximum([xo, yo], [x, y]) |
||||||
|
self.drag_rect = None |
||||||
|
if x1-x0 > 0 and y1-y0 > 0: |
||||||
|
self.drag_rect = (x0, y0, x1, y1) |
||||||
|
else: |
||||||
|
rect = self.drag_rect |
||||||
|
self.drag_start = None |
||||||
|
self.drag_rect = None |
||||||
|
if rect: |
||||||
|
self.callback(rect) |
||||||
|
def draw(self, vis): |
||||||
|
if not self.drag_rect: |
||||||
|
return False |
||||||
|
x0, y0, x1, y1 = self.drag_rect |
||||||
|
cv2.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2) |
||||||
|
return True |
||||||
|
@property |
||||||
|
def dragging(self): |
||||||
|
return self.drag_rect is not None |
||||||
|
|
||||||
|
|
||||||
|
def grouper(n, iterable, fillvalue=None): |
||||||
|
'''grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx''' |
||||||
|
args = [iter(iterable)] * n |
||||||
|
return it.izip_longest(fillvalue=fillvalue, *args) |
||||||
|
|
||||||
|
def mosaic(w, imgs): |
||||||
|
'''Make a grid from images. |
||||||
|
|
||||||
|
w -- number of grid columns |
||||||
|
imgs -- images (must have same size and format) |
||||||
|
''' |
||||||
|
imgs = iter(imgs) |
||||||
|
img0 = imgs.next() |
||||||
|
pad = np.zeros_like(img0) |
||||||
|
imgs = it.chain([img0], imgs) |
||||||
|
rows = grouper(w, imgs, pad) |
||||||
|
return np.vstack(map(np.hstack, rows)) |
||||||
|
|
||||||
|
def getsize(img): |
||||||
|
h, w = img.shape[:2] |
||||||
|
return w, h |
||||||
|
|
||||||
|
def mdot(*args): |
||||||
|
return reduce(np.dot, args) |
||||||
|
|
||||||
|
def draw_keypoints(vis, keypoints, color = (0, 255, 255)): |
||||||
|
for kp in keypoints: |
||||||
|
x, y = kp.pt |
||||||
|
cv2.circle(vis, (int(x), int(y)), 2, color) |
@ -0,0 +1,91 @@ |
|||||||
|
#!/usr/bin/env python |
||||||
|
|
||||||
|
''' |
||||||
|
This sample demonstrates SEEDS Superpixels segmentation |
||||||
|
Use [space] to toggle output mode |
||||||
|
|
||||||
|
Usage: |
||||||
|
seeds.py [<video source>] |
||||||
|
|
||||||
|
''' |
||||||
|
|
||||||
|
import numpy as np |
||||||
|
import cv2 |
||||||
|
|
||||||
|
# relative module |
||||||
|
import video |
||||||
|
|
||||||
|
# built-in module |
||||||
|
import sys |
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__': |
||||||
|
print __doc__ |
||||||
|
|
||||||
|
try: |
||||||
|
fn = sys.argv[1] |
||||||
|
except: |
||||||
|
fn = 0 |
||||||
|
|
||||||
|
def nothing(*arg): |
||||||
|
pass |
||||||
|
|
||||||
|
cv2.namedWindow('SEEDS') |
||||||
|
cv2.createTrackbar('Number of Superpixels', 'SEEDS', 400, 1000, nothing) |
||||||
|
cv2.createTrackbar('Iterations', 'SEEDS', 4, 12, nothing) |
||||||
|
|
||||||
|
seeds = None |
||||||
|
display_mode = 0 |
||||||
|
num_superpixels = 400 |
||||||
|
prior = 2 |
||||||
|
num_levels = 4 |
||||||
|
num_histogram_bins = 5 |
||||||
|
|
||||||
|
cap = video.create_capture(fn) |
||||||
|
while True: |
||||||
|
flag, img = cap.read() |
||||||
|
converted_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) |
||||||
|
height,width,channels = converted_img.shape |
||||||
|
num_superpixels_new = cv2.getTrackbarPos('Number of Superpixels', 'SEEDS') |
||||||
|
num_iterations = cv2.getTrackbarPos('Iterations', 'SEEDS') |
||||||
|
|
||||||
|
if not seeds or num_superpixels_new != num_superpixels: |
||||||
|
num_superpixels = num_superpixels_new |
||||||
|
seeds = cv2.ximgproc.createSuperpixelSEEDS(width, height, channels, |
||||||
|
num_superpixels, num_levels, prior, num_histogram_bins) |
||||||
|
color_img = np.zeros((height,width,3), np.uint8) |
||||||
|
color_img[:] = (0, 0, 255) |
||||||
|
|
||||||
|
seeds.iterate(converted_img, num_iterations) |
||||||
|
|
||||||
|
# retrieve the segmentation result |
||||||
|
labels = seeds.getLabels() |
||||||
|
|
||||||
|
|
||||||
|
# labels output: use the last x bits to determine the color |
||||||
|
num_label_bits = 2 |
||||||
|
labels &= (1<<num_label_bits)-1 |
||||||
|
labels *= 1<<(16-num_label_bits) |
||||||
|
|
||||||
|
|
||||||
|
mask = seeds.getLabelContourMask(False) |
||||||
|
|
||||||
|
# stitch foreground & background together |
||||||
|
mask_inv = cv2.bitwise_not(mask) |
||||||
|
result_bg = cv2.bitwise_and(img, img, mask=mask_inv) |
||||||
|
result_fg = cv2.bitwise_and(color_img, color_img, mask=mask) |
||||||
|
result = cv2.add(result_bg, result_fg) |
||||||
|
|
||||||
|
if display_mode == 0: |
||||||
|
cv2.imshow('SEEDS', result) |
||||||
|
elif display_mode == 1: |
||||||
|
cv2.imshow('SEEDS', mask) |
||||||
|
else: |
||||||
|
cv2.imshow('SEEDS', labels) |
||||||
|
|
||||||
|
ch = cv2.waitKey(1) |
||||||
|
if ch == 27: |
||||||
|
break |
||||||
|
elif ch & 0xff == ord(' '): |
||||||
|
display_mode = (display_mode + 1) % 3 |
||||||
|
cv2.destroyAllWindows() |
@ -0,0 +1,199 @@ |
|||||||
|
#!/usr/bin/env python |
||||||
|
|
||||||
|
''' |
||||||
|
Video capture sample. |
||||||
|
|
||||||
|
Sample shows how VideoCapture class can be used to acquire video |
||||||
|
frames from a camera of a movie file. Also the sample provides |
||||||
|
an example of procedural video generation by an object, mimicking |
||||||
|
the VideoCapture interface (see Chess class). |
||||||
|
|
||||||
|
'create_capture' is a convinience function for capture creation, |
||||||
|
falling back to procedural video in case of error. |
||||||
|
|
||||||
|
Usage: |
||||||
|
video.py [--shotdir <shot path>] [source0] [source1] ...' |
||||||
|
|
||||||
|
sourceN is an |
||||||
|
- integer number for camera capture |
||||||
|
- name of video file |
||||||
|
- synth:<params> for procedural video |
||||||
|
|
||||||
|
Synth examples: |
||||||
|
synth:bg=../cpp/lena.jpg:noise=0.1 |
||||||
|
synth:class=chess:bg=../cpp/lena.jpg:noise=0.1:size=640x480 |
||||||
|
|
||||||
|
Keys: |
||||||
|
ESC - exit |
||||||
|
SPACE - save current frame to <shot path> directory |
||||||
|
|
||||||
|
''' |
||||||
|
|
||||||
|
import numpy as np |
||||||
|
from numpy import pi, sin, cos |
||||||
|
|
||||||
|
import cv2 |
||||||
|
|
||||||
|
# built-in modules |
||||||
|
from time import clock |
||||||
|
|
||||||
|
# local modules |
||||||
|
import common |
||||||
|
|
||||||
|
class VideoSynthBase(object): |
||||||
|
def __init__(self, size=None, noise=0.0, bg = None, **params): |
||||||
|
self.bg = None |
||||||
|
self.frame_size = (640, 480) |
||||||
|
if bg is not None: |
||||||
|
self.bg = cv2.imread(bg, 1) |
||||||
|
h, w = self.bg.shape[:2] |
||||||
|
self.frame_size = (w, h) |
||||||
|
|
||||||
|
if size is not None: |
||||||
|
w, h = map(int, size.split('x')) |
||||||
|
self.frame_size = (w, h) |
||||||
|
self.bg = cv2.resize(self.bg, self.frame_size) |
||||||
|
|
||||||
|
self.noise = float(noise) |
||||||
|
|
||||||
|
def render(self, dst): |
||||||
|
pass |
||||||
|
|
||||||
|
def read(self, dst=None): |
||||||
|
w, h = self.frame_size |
||||||
|
|
||||||
|
if self.bg is None: |
||||||
|
buf = np.zeros((h, w, 3), np.uint8) |
||||||
|
else: |
||||||
|
buf = self.bg.copy() |
||||||
|
|
||||||
|
self.render(buf) |
||||||
|
|
||||||
|
if self.noise > 0.0: |
||||||
|
noise = np.zeros((h, w, 3), np.int8) |
||||||
|
cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise) |
||||||
|
buf = cv2.add(buf, noise, dtype=cv2.CV_8UC3) |
||||||
|
return True, buf |
||||||
|
|
||||||
|
def isOpened(self): |
||||||
|
return True |
||||||
|
|
||||||
|
class Chess(VideoSynthBase): |
||||||
|
def __init__(self, **kw): |
||||||
|
super(Chess, self).__init__(**kw) |
||||||
|
|
||||||
|
w, h = self.frame_size |
||||||
|
|
||||||
|
self.grid_size = sx, sy = 10, 7 |
||||||
|
white_quads = [] |
||||||
|
black_quads = [] |
||||||
|
for i, j in np.ndindex(sy, sx): |
||||||
|
q = [[j, i, 0], [j+1, i, 0], [j+1, i+1, 0], [j, i+1, 0]] |
||||||
|
[white_quads, black_quads][(i + j) % 2].append(q) |
||||||
|
self.white_quads = np.float32(white_quads) |
||||||
|
self.black_quads = np.float32(black_quads) |
||||||
|
|
||||||
|
fx = 0.9 |
||||||
|
self.K = np.float64([[fx*w, 0, 0.5*(w-1)], |
||||||
|
[0, fx*w, 0.5*(h-1)], |
||||||
|
[0.0,0.0, 1.0]]) |
||||||
|
|
||||||
|
self.dist_coef = np.float64([-0.2, 0.1, 0, 0]) |
||||||
|
self.t = 0 |
||||||
|
|
||||||
|
def draw_quads(self, img, quads, color = (0, 255, 0)): |
||||||
|
img_quads = cv2.projectPoints(quads.reshape(-1, 3), self.rvec, self.tvec, self.K, self.dist_coef) [0] |
||||||
|
img_quads.shape = quads.shape[:2] + (2,) |
||||||
|
for q in img_quads: |
||||||
|
cv2.fillConvexPoly(img, np.int32(q*4), color, cv2.LINE_AA, shift=2) |
||||||
|
|
||||||
|
def render(self, dst): |
||||||
|
t = self.t |
||||||
|
self.t += 1.0/30.0 |
||||||
|
|
||||||
|
sx, sy = self.grid_size |
||||||
|
center = np.array([0.5*sx, 0.5*sy, 0.0]) |
||||||
|
phi = pi/3 + sin(t*3)*pi/8 |
||||||
|
c, s = cos(phi), sin(phi) |
||||||
|
ofs = np.array([sin(1.2*t), cos(1.8*t), 0]) * sx * 0.2 |
||||||
|
eye_pos = center + np.array([cos(t)*c, sin(t)*c, s]) * 15.0 + ofs |
||||||
|
target_pos = center + ofs |
||||||
|
|
||||||
|
R, self.tvec = common.lookat(eye_pos, target_pos) |
||||||
|
self.rvec = common.mtx2rvec(R) |
||||||
|
|
||||||
|
self.draw_quads(dst, self.white_quads, (245, 245, 245)) |
||||||
|
self.draw_quads(dst, self.black_quads, (10, 10, 10)) |
||||||
|
|
||||||
|
|
||||||
|
classes = dict(chess=Chess) |
||||||
|
|
||||||
|
presets = dict( |
||||||
|
empty = 'synth:', |
||||||
|
lena = 'synth:bg=../cpp/lena.jpg:noise=0.1', |
||||||
|
chess = 'synth:class=chess:bg=../cpp/lena.jpg:noise=0.1:size=640x480' |
||||||
|
) |
||||||
|
|
||||||
|
|
||||||
|
def create_capture(source = 0, fallback = presets['chess']): |
||||||
|
'''source: <int> or '<int>|<filename>|synth [:<param_name>=<value> [:...]]' |
||||||
|
''' |
||||||
|
source = str(source).strip() |
||||||
|
chunks = source.split(':') |
||||||
|
# handle drive letter ('c:', ...) |
||||||
|
if len(chunks) > 1 and len(chunks[0]) == 1 and chunks[0].isalpha(): |
||||||
|
chunks[1] = chunks[0] + ':' + chunks[1] |
||||||
|
del chunks[0] |
||||||
|
|
||||||
|
source = chunks[0] |
||||||
|
try: source = int(source) |
||||||
|
except ValueError: pass |
||||||
|
params = dict( s.split('=') for s in chunks[1:] ) |
||||||
|
|
||||||
|
cap = None |
||||||
|
if source == 'synth': |
||||||
|
Class = classes.get(params.get('class', None), VideoSynthBase) |
||||||
|
try: cap = Class(**params) |
||||||
|
except: pass |
||||||
|
else: |
||||||
|
cap = cv2.VideoCapture(source) |
||||||
|
if 'size' in params: |
||||||
|
w, h = map(int, params['size'].split('x')) |
||||||
|
cap.set(cv2.CAP_PROP_FRAME_WIDTH, w) |
||||||
|
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, h) |
||||||
|
if cap is None or not cap.isOpened(): |
||||||
|
print 'Warning: unable to open video source: ', source |
||||||
|
if fallback is not None: |
||||||
|
return create_capture(fallback, None) |
||||||
|
return cap |
||||||
|
|
||||||
|
if __name__ == '__main__': |
||||||
|
import sys |
||||||
|
import getopt |
||||||
|
|
||||||
|
print __doc__ |
||||||
|
|
||||||
|
args, sources = getopt.getopt(sys.argv[1:], '', 'shotdir=') |
||||||
|
args = dict(args) |
||||||
|
shotdir = args.get('--shotdir', '.') |
||||||
|
if len(sources) == 0: |
||||||
|
sources = [ 0 ] |
||||||
|
|
||||||
|
caps = map(create_capture, sources) |
||||||
|
shot_idx = 0 |
||||||
|
while True: |
||||||
|
imgs = [] |
||||||
|
for i, cap in enumerate(caps): |
||||||
|
ret, img = cap.read() |
||||||
|
imgs.append(img) |
||||||
|
cv2.imshow('capture %d' % i, img) |
||||||
|
ch = 0xFF & cv2.waitKey(1) |
||||||
|
if ch == 27: |
||||||
|
break |
||||||
|
if ch == ord(' '): |
||||||
|
for i, img in enumerate(imgs): |
||||||
|
fn = '%s/shot_%d_%03d.bmp' % (shotdir, i, shot_idx) |
||||||
|
cv2.imwrite(fn, img) |
||||||
|
print fn, 'saved' |
||||||
|
shot_idx += 1 |
||||||
|
cv2.destroyAllWindows() |
Loading…
Reference in new issue