|
|
|
@ -44,133 +44,133 @@ using namespace std; |
|
|
|
|
|
|
|
|
|
namespace |
|
|
|
|
{ |
|
|
|
|
void shift(InputArray src, OutputArray dst, int shift_x, int shift_y) { |
|
|
|
|
Mat S = src.getMat(); |
|
|
|
|
Mat D = dst.getMat(); |
|
|
|
|
|
|
|
|
|
if(S.data == D.data){ |
|
|
|
|
S = S.clone(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
D.create(S.size(), S.type()); |
|
|
|
|
void shift(InputArray src, OutputArray dst, int shift_x, int shift_y) { |
|
|
|
|
Mat S = src.getMat(); |
|
|
|
|
Mat D = dst.getMat(); |
|
|
|
|
|
|
|
|
|
if(S.data == D.data){ |
|
|
|
|
S = S.clone(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
D.create(S.size(), S.type()); |
|
|
|
|
|
|
|
|
|
Mat s0(S, Rect(0, 0, S.cols - shift_x, S.rows - shift_y)); |
|
|
|
|
Mat s1(S, Rect(S.cols - shift_x, 0, shift_x, S.rows - shift_y)); |
|
|
|
|
Mat s2(S, Rect(0, S.rows - shift_y, S.cols-shift_x, shift_y)); |
|
|
|
|
Mat s3(S, Rect(S.cols - shift_x, S.rows- shift_y, shift_x, shift_y)); |
|
|
|
|
|
|
|
|
|
Mat d0(D, Rect(shift_x, shift_y, S.cols - shift_x, S.rows - shift_y)); |
|
|
|
|
Mat d1(D, Rect(0, shift_y, shift_x, S.rows - shift_y)); |
|
|
|
|
Mat d2(D, Rect(shift_x, 0, S.cols-shift_x, shift_y)); |
|
|
|
|
Mat d3(D, Rect(0,0,shift_x, shift_y)); |
|
|
|
|
|
|
|
|
|
s0.copyTo(d0); |
|
|
|
|
s1.copyTo(d1); |
|
|
|
|
s2.copyTo(d2); |
|
|
|
|
s3.copyTo(d3); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// dft after padding imaginary
|
|
|
|
|
void fft(InputArray src, OutputArray dst) { |
|
|
|
|
Mat S = src.getMat(); |
|
|
|
|
Mat planes[] = {S, Mat::zeros(S.size(), S.type())}; |
|
|
|
|
merge(planes, 2, dst); |
|
|
|
|
|
|
|
|
|
// compute the result
|
|
|
|
|
dft(dst, dst); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void psf2otf(InputArray src, OutputArray dst, int height, int width){ |
|
|
|
|
Mat S = src.getMat(); |
|
|
|
|
Mat D = dst.getMat(); |
|
|
|
|
|
|
|
|
|
Mat padded; |
|
|
|
|
|
|
|
|
|
if(S.data == D.data){ |
|
|
|
|
S = S.clone(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// add padding
|
|
|
|
|
copyMakeBorder(S, padded, 0, height - S.rows, 0, width - S.cols, |
|
|
|
|
BORDER_CONSTANT, Scalar::all(0)); |
|
|
|
|
|
|
|
|
|
shift(padded, padded, width - S.cols / 2, height - S.rows / 2); |
|
|
|
|
|
|
|
|
|
// convert to frequency domain
|
|
|
|
|
fft(padded, dst); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void dftMultiChannel(InputArray src, vector<Mat> &dst){ |
|
|
|
|
Mat S = src.getMat(); |
|
|
|
|
|
|
|
|
|
split(S, dst); |
|
|
|
|
|
|
|
|
|
for(int i = 0; i < S.channels(); i++){ |
|
|
|
|
fft(dst[i], dst[i]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void idftMultiChannel(const vector<Mat> &src, OutputArray dst){ |
|
|
|
|
Mat *channels = new Mat[src.size()]; |
|
|
|
|
|
|
|
|
|
for(int i = 0 ; unsigned(i) < src.size(); i++){ |
|
|
|
|
idft(src[i], channels[i]); |
|
|
|
|
Mat realImg[2]; |
|
|
|
|
split(channels[i], realImg); |
|
|
|
|
channels[i] = realImg[0] / src[i].cols / src[i].rows; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Mat D; |
|
|
|
|
merge(channels, src.size(), D); |
|
|
|
|
D.copyTo(dst); |
|
|
|
|
|
|
|
|
|
delete[] channels; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void addComplex(InputArray aSrc, int bSrc, OutputArray dst){ |
|
|
|
|
Mat panels[2]; |
|
|
|
|
split(aSrc.getMat(), panels); |
|
|
|
|
panels[0] = panels[0] + bSrc; |
|
|
|
|
merge(panels, 2, dst); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void divComplexByReal(InputArray aSrc, InputArray bSrc, OutputArray dst){ |
|
|
|
|
Mat aPanels[2]; |
|
|
|
|
Mat bPanels[2]; |
|
|
|
|
split(aSrc.getMat(), aPanels); |
|
|
|
|
split(bSrc.getMat(), bPanels); |
|
|
|
|
|
|
|
|
|
Mat realPart; |
|
|
|
|
Mat imaginaryPart; |
|
|
|
|
|
|
|
|
|
divide(aPanels[0], bSrc.getMat(), realPart); |
|
|
|
|
divide(aPanels[1], bSrc.getMat(), imaginaryPart); |
|
|
|
|
|
|
|
|
|
aPanels[0] = realPart; |
|
|
|
|
aPanels[1] = imaginaryPart; |
|
|
|
|
|
|
|
|
|
Mat rst; |
|
|
|
|
merge(aPanels, 2, dst); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void divComplexByRealMultiChannel(const vector<Mat> &numer, |
|
|
|
|
const vector<Mat> &denom, vector<Mat> &dst) |
|
|
|
|
{ |
|
|
|
|
for(int i = 0; unsigned(i) < numer.size(); i++) |
|
|
|
|
{ |
|
|
|
|
divComplexByReal(numer[i], denom[i], dst[i]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// power of 2 of the absolute value of the complex
|
|
|
|
|
Mat pow2absComplex(InputArray src){ |
|
|
|
|
Mat S = src.getMat(); |
|
|
|
|
|
|
|
|
|
Mat sPanels[2]; |
|
|
|
|
split(S, sPanels); |
|
|
|
|
Mat s0(S, Rect(0, 0, S.cols - shift_x, S.rows - shift_y)); |
|
|
|
|
Mat s1(S, Rect(S.cols - shift_x, 0, shift_x, S.rows - shift_y)); |
|
|
|
|
Mat s2(S, Rect(0, S.rows - shift_y, S.cols-shift_x, shift_y)); |
|
|
|
|
Mat s3(S, Rect(S.cols - shift_x, S.rows- shift_y, shift_x, shift_y)); |
|
|
|
|
|
|
|
|
|
Mat d0(D, Rect(shift_x, shift_y, S.cols - shift_x, S.rows - shift_y)); |
|
|
|
|
Mat d1(D, Rect(0, shift_y, shift_x, S.rows - shift_y)); |
|
|
|
|
Mat d2(D, Rect(shift_x, 0, S.cols-shift_x, shift_y)); |
|
|
|
|
Mat d3(D, Rect(0,0,shift_x, shift_y)); |
|
|
|
|
|
|
|
|
|
s0.copyTo(d0); |
|
|
|
|
s1.copyTo(d1); |
|
|
|
|
s2.copyTo(d2); |
|
|
|
|
s3.copyTo(d3); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// dft after padding imaginary
|
|
|
|
|
void fft(InputArray src, OutputArray dst) { |
|
|
|
|
Mat S = src.getMat(); |
|
|
|
|
Mat planes[] = {S, Mat::zeros(S.size(), S.type())}; |
|
|
|
|
merge(planes, 2, dst); |
|
|
|
|
|
|
|
|
|
// compute the result
|
|
|
|
|
dft(dst, dst); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void psf2otf(InputArray src, OutputArray dst, int height, int width){ |
|
|
|
|
Mat S = src.getMat(); |
|
|
|
|
Mat D = dst.getMat(); |
|
|
|
|
|
|
|
|
|
Mat padded; |
|
|
|
|
|
|
|
|
|
if(S.data == D.data){ |
|
|
|
|
S = S.clone(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// add padding
|
|
|
|
|
copyMakeBorder(S, padded, 0, height - S.rows, 0, width - S.cols, |
|
|
|
|
BORDER_CONSTANT, Scalar::all(0)); |
|
|
|
|
|
|
|
|
|
shift(padded, padded, width - S.cols / 2, height - S.rows / 2); |
|
|
|
|
|
|
|
|
|
// convert to frequency domain
|
|
|
|
|
fft(padded, dst); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void dftMultiChannel(InputArray src, vector<Mat> &dst){ |
|
|
|
|
Mat S = src.getMat(); |
|
|
|
|
|
|
|
|
|
split(S, dst); |
|
|
|
|
|
|
|
|
|
for(int i = 0; i < S.channels(); i++){ |
|
|
|
|
fft(dst[i], dst[i]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void idftMultiChannel(const vector<Mat> &src, OutputArray dst){ |
|
|
|
|
Mat *channels = new Mat[src.size()]; |
|
|
|
|
|
|
|
|
|
for(int i = 0 ; unsigned(i) < src.size(); i++){ |
|
|
|
|
idft(src[i], channels[i]); |
|
|
|
|
Mat realImg[2]; |
|
|
|
|
split(channels[i], realImg); |
|
|
|
|
channels[i] = realImg[0] / src[i].cols / src[i].rows; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Mat D; |
|
|
|
|
merge(channels, src.size(), D); |
|
|
|
|
D.copyTo(dst); |
|
|
|
|
|
|
|
|
|
delete[] channels; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void addComplex(InputArray aSrc, int bSrc, OutputArray dst){ |
|
|
|
|
Mat panels[2]; |
|
|
|
|
split(aSrc.getMat(), panels); |
|
|
|
|
panels[0] = panels[0] + bSrc; |
|
|
|
|
merge(panels, 2, dst); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void divComplexByReal(InputArray aSrc, InputArray bSrc, OutputArray dst){ |
|
|
|
|
Mat aPanels[2]; |
|
|
|
|
Mat bPanels[2]; |
|
|
|
|
split(aSrc.getMat(), aPanels); |
|
|
|
|
split(bSrc.getMat(), bPanels); |
|
|
|
|
|
|
|
|
|
Mat realPart; |
|
|
|
|
Mat imaginaryPart; |
|
|
|
|
|
|
|
|
|
divide(aPanels[0], bSrc.getMat(), realPart); |
|
|
|
|
divide(aPanels[1], bSrc.getMat(), imaginaryPart); |
|
|
|
|
|
|
|
|
|
aPanels[0] = realPart; |
|
|
|
|
aPanels[1] = imaginaryPart; |
|
|
|
|
|
|
|
|
|
Mat rst; |
|
|
|
|
merge(aPanels, 2, dst); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void divComplexByRealMultiChannel(const vector<Mat> &numer, |
|
|
|
|
const vector<Mat> &denom, vector<Mat> &dst) |
|
|
|
|
{ |
|
|
|
|
for(int i = 0; unsigned(i) < numer.size(); i++) |
|
|
|
|
{ |
|
|
|
|
divComplexByReal(numer[i], denom[i], dst[i]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// power of 2 of the absolute value of the complex
|
|
|
|
|
Mat pow2absComplex(InputArray src){ |
|
|
|
|
Mat S = src.getMat(); |
|
|
|
|
|
|
|
|
|
Mat sPanels[2]; |
|
|
|
|
split(S, sPanels); |
|
|
|
|
|
|
|
|
|
return sPanels[0].mul(sPanels[0]) + sPanels[1].mul(sPanels[1]); |
|
|
|
|
} |
|
|
|
|
return sPanels[0].mul(sPanels[0]) + sPanels[1].mul(sPanels[1]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
namespace cv |
|
|
|
@ -180,129 +180,129 @@ namespace ximgproc |
|
|
|
|
|
|
|
|
|
void l0Smooth(InputArray src, OutputArray dst, double lambda, double kappa) |
|
|
|
|
{ |
|
|
|
|
Mat S = src.getMat(); |
|
|
|
|
|
|
|
|
|
CV_Assert(!S.empty()); |
|
|
|
|
CV_Assert(S.depth() == CV_8U || S.depth() == CV_16U |
|
|
|
|
|| S.depth() == CV_32F || S.depth() == CV_64F); |
|
|
|
|
|
|
|
|
|
dst.create(src.size(), src.type()); |
|
|
|
|
|
|
|
|
|
if(S.data == dst.getMat().data){ |
|
|
|
|
S = S.clone(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if(S.depth() == CV_8U) |
|
|
|
|
{ |
|
|
|
|
S.convertTo(S, CV_32F, 1/255.0f); |
|
|
|
|
} |
|
|
|
|
else if(S.depth() == CV_16U) |
|
|
|
|
{ |
|
|
|
|
S.convertTo(S, CV_32F, 1/65535.0f); |
|
|
|
|
}else if(S.depth() == CV_64F){ |
|
|
|
|
S.convertTo(S, CV_32F); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const double betaMax = 100000; |
|
|
|
|
|
|
|
|
|
// gradient operators in frequency domain
|
|
|
|
|
Mat otfFx, otfFy; |
|
|
|
|
float kernel[2] = {-1, 1}; |
|
|
|
|
float kernel_inv[2] = {1,-1}; |
|
|
|
|
psf2otf(Mat(1,2,CV_32FC1, kernel_inv), otfFx, S.rows, S.cols); |
|
|
|
|
psf2otf(Mat(2,1,CV_32FC1, kernel_inv), otfFy, S.rows, S.cols); |
|
|
|
|
|
|
|
|
|
vector<Mat> denomConst; |
|
|
|
|
Mat tmp = pow2absComplex(otfFx) + pow2absComplex(otfFy); |
|
|
|
|
|
|
|
|
|
for(int i = 0; i < S.channels(); i++){ |
|
|
|
|
denomConst.push_back(tmp); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// input image in frequency domain
|
|
|
|
|
vector<Mat> numerConst; |
|
|
|
|
dftMultiChannel(S, numerConst); |
|
|
|
|
|
|
|
|
|
/*********************************
|
|
|
|
|
* solver |
|
|
|
|
*********************************/ |
|
|
|
|
double beta = 2 * lambda; |
|
|
|
|
while(beta < betaMax){ |
|
|
|
|
// h, v subproblem
|
|
|
|
|
Mat h, v; |
|
|
|
|
|
|
|
|
|
filter2D(S, h, -1, Mat(1, 2, CV_32FC1, kernel), Point(0, 0), |
|
|
|
|
0, BORDER_REPLICATE); |
|
|
|
|
filter2D(S, v, -1, Mat(2, 1, CV_32FC1, kernel), Point(0, 0), |
|
|
|
|
0, BORDER_REPLICATE); |
|
|
|
|
|
|
|
|
|
Mat hvMag = h.mul(h) + v.mul(v); |
|
|
|
|
|
|
|
|
|
Mat mask; |
|
|
|
|
if(S.channels() == 1) |
|
|
|
|
{ |
|
|
|
|
threshold(hvMag, mask, lambda/beta, 1, THRESH_BINARY); |
|
|
|
|
} |
|
|
|
|
else if(S.channels() > 1) |
|
|
|
|
{ |
|
|
|
|
Mat *channels = new Mat[S.channels()]; |
|
|
|
|
split(hvMag, channels); |
|
|
|
|
hvMag = channels[0]; |
|
|
|
|
|
|
|
|
|
for(int i = 1; i < S.channels(); i++){ |
|
|
|
|
hvMag = hvMag + channels[i]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
threshold(hvMag, mask, lambda/beta, 1, THRESH_BINARY); |
|
|
|
|
|
|
|
|
|
Mat in[] = {mask, mask, mask}; |
|
|
|
|
merge(in, 3, mask); |
|
|
|
|
|
|
|
|
|
delete[] channels; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
h = h.mul(mask); |
|
|
|
|
v = v.mul(mask); |
|
|
|
|
|
|
|
|
|
// S subproblem
|
|
|
|
|
vector<Mat> denom(S.channels()); |
|
|
|
|
for(int i = 0; i < S.channels(); i++){ |
|
|
|
|
denom[i] = beta * denomConst[i] + 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Mat hGrad, vGrad; |
|
|
|
|
filter2D(h, hGrad, -1, Mat(1, 2, CV_32FC1, kernel_inv)); |
|
|
|
|
filter2D(v, vGrad, -1, Mat(2, 1, CV_32FC1, kernel_inv)); |
|
|
|
|
|
|
|
|
|
vector<Mat> hvGradFreq; |
|
|
|
|
dftMultiChannel(hGrad+vGrad, hvGradFreq); |
|
|
|
|
|
|
|
|
|
vector<Mat> numer(S.channels()); |
|
|
|
|
for(int i = 0; i < S.channels(); i++){ |
|
|
|
|
numer[i] = numerConst[i] + hvGradFreq[i] * beta; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
vector<Mat> sFreq(S.channels()); |
|
|
|
|
divComplexByRealMultiChannel(numer, denom, sFreq); |
|
|
|
|
|
|
|
|
|
idftMultiChannel(sFreq, S); |
|
|
|
|
|
|
|
|
|
beta = beta * kappa; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Mat D = dst.getMat(); |
|
|
|
|
if(D.depth() == CV_8U) |
|
|
|
|
{ |
|
|
|
|
S.convertTo(D, CV_8U, 255); |
|
|
|
|
} |
|
|
|
|
else if(D.depth() == CV_16U) |
|
|
|
|
{ |
|
|
|
|
S.convertTo(D, CV_16U, 65535); |
|
|
|
|
}else if(D.depth() == CV_64F){ |
|
|
|
|
S.convertTo(D, CV_64F); |
|
|
|
|
}else{ |
|
|
|
|
S.copyTo(D); |
|
|
|
|
} |
|
|
|
|
Mat S = src.getMat(); |
|
|
|
|
|
|
|
|
|
CV_Assert(!S.empty()); |
|
|
|
|
CV_Assert(S.depth() == CV_8U || S.depth() == CV_16U |
|
|
|
|
|| S.depth() == CV_32F || S.depth() == CV_64F); |
|
|
|
|
|
|
|
|
|
dst.create(src.size(), src.type()); |
|
|
|
|
|
|
|
|
|
if(S.data == dst.getMat().data){ |
|
|
|
|
S = S.clone(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if(S.depth() == CV_8U) |
|
|
|
|
{ |
|
|
|
|
S.convertTo(S, CV_32F, 1/255.0f); |
|
|
|
|
} |
|
|
|
|
else if(S.depth() == CV_16U) |
|
|
|
|
{ |
|
|
|
|
S.convertTo(S, CV_32F, 1/65535.0f); |
|
|
|
|
}else if(S.depth() == CV_64F){ |
|
|
|
|
S.convertTo(S, CV_32F); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const double betaMax = 100000; |
|
|
|
|
|
|
|
|
|
// gradient operators in frequency domain
|
|
|
|
|
Mat otfFx, otfFy; |
|
|
|
|
float kernel[2] = {-1, 1}; |
|
|
|
|
float kernel_inv[2] = {1,-1}; |
|
|
|
|
psf2otf(Mat(1,2,CV_32FC1, kernel_inv), otfFx, S.rows, S.cols); |
|
|
|
|
psf2otf(Mat(2,1,CV_32FC1, kernel_inv), otfFy, S.rows, S.cols); |
|
|
|
|
|
|
|
|
|
vector<Mat> denomConst; |
|
|
|
|
Mat tmp = pow2absComplex(otfFx) + pow2absComplex(otfFy); |
|
|
|
|
|
|
|
|
|
for(int i = 0; i < S.channels(); i++){ |
|
|
|
|
denomConst.push_back(tmp); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// input image in frequency domain
|
|
|
|
|
vector<Mat> numerConst; |
|
|
|
|
dftMultiChannel(S, numerConst); |
|
|
|
|
|
|
|
|
|
/*********************************
|
|
|
|
|
* solver |
|
|
|
|
*********************************/ |
|
|
|
|
double beta = 2 * lambda; |
|
|
|
|
while(beta < betaMax){ |
|
|
|
|
// h, v subproblem
|
|
|
|
|
Mat h, v; |
|
|
|
|
|
|
|
|
|
filter2D(S, h, -1, Mat(1, 2, CV_32FC1, kernel), Point(0, 0), |
|
|
|
|
0, BORDER_REPLICATE); |
|
|
|
|
filter2D(S, v, -1, Mat(2, 1, CV_32FC1, kernel), Point(0, 0), |
|
|
|
|
0, BORDER_REPLICATE); |
|
|
|
|
|
|
|
|
|
Mat hvMag = h.mul(h) + v.mul(v); |
|
|
|
|
|
|
|
|
|
Mat mask; |
|
|
|
|
if(S.channels() == 1) |
|
|
|
|
{ |
|
|
|
|
threshold(hvMag, mask, lambda/beta, 1, THRESH_BINARY); |
|
|
|
|
} |
|
|
|
|
else if(S.channels() > 1) |
|
|
|
|
{ |
|
|
|
|
Mat *channels = new Mat[S.channels()]; |
|
|
|
|
split(hvMag, channels); |
|
|
|
|
hvMag = channels[0]; |
|
|
|
|
|
|
|
|
|
for(int i = 1; i < S.channels(); i++){ |
|
|
|
|
hvMag = hvMag + channels[i]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
threshold(hvMag, mask, lambda/beta, 1, THRESH_BINARY); |
|
|
|
|
|
|
|
|
|
Mat in[] = {mask, mask, mask}; |
|
|
|
|
merge(in, 3, mask); |
|
|
|
|
|
|
|
|
|
delete[] channels; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
h = h.mul(mask); |
|
|
|
|
v = v.mul(mask); |
|
|
|
|
|
|
|
|
|
// S subproblem
|
|
|
|
|
vector<Mat> denom(S.channels()); |
|
|
|
|
for(int i = 0; i < S.channels(); i++){ |
|
|
|
|
denom[i] = beta * denomConst[i] + 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Mat hGrad, vGrad; |
|
|
|
|
filter2D(h, hGrad, -1, Mat(1, 2, CV_32FC1, kernel_inv)); |
|
|
|
|
filter2D(v, vGrad, -1, Mat(2, 1, CV_32FC1, kernel_inv)); |
|
|
|
|
|
|
|
|
|
vector<Mat> hvGradFreq; |
|
|
|
|
dftMultiChannel(hGrad+vGrad, hvGradFreq); |
|
|
|
|
|
|
|
|
|
vector<Mat> numer(S.channels()); |
|
|
|
|
for(int i = 0; i < S.channels(); i++){ |
|
|
|
|
numer[i] = numerConst[i] + hvGradFreq[i] * beta; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
vector<Mat> sFreq(S.channels()); |
|
|
|
|
divComplexByRealMultiChannel(numer, denom, sFreq); |
|
|
|
|
|
|
|
|
|
idftMultiChannel(sFreq, S); |
|
|
|
|
|
|
|
|
|
beta = beta * kappa; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Mat D = dst.getMat(); |
|
|
|
|
if(D.depth() == CV_8U) |
|
|
|
|
{ |
|
|
|
|
S.convertTo(D, CV_8U, 255); |
|
|
|
|
} |
|
|
|
|
else if(D.depth() == CV_16U) |
|
|
|
|
{ |
|
|
|
|
S.convertTo(D, CV_16U, 65535); |
|
|
|
|
}else if(D.depth() == CV_64F){ |
|
|
|
|
S.convertTo(D, CV_64F); |
|
|
|
|
}else{ |
|
|
|
|
S.copyTo(D); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|