Merge pull request #382 from zhou-chao:l0smooth
commit
051759c162
5 changed files with 617 additions and 0 deletions
@ -0,0 +1,81 @@ |
||||
/*
|
||||
* By downloading, copying, installing or using the software you agree to this license. |
||||
* If you do not agree to this license, do not download, install, |
||||
* copy or use the software. |
||||
* |
||||
* |
||||
* License Agreement |
||||
* For Open Source Computer Vision Library |
||||
* (3 - clause BSD License) |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without modification, |
||||
* are permitted provided that the following conditions are met : |
||||
* |
||||
* *Redistributions of source code must retain the above copyright notice, |
||||
* this list of conditions and the following disclaimer. |
||||
* |
||||
* * Redistributions in binary form must reproduce the above copyright notice, |
||||
* this list of conditions and the following disclaimer in the documentation |
||||
* and / or other materials provided with the distribution. |
||||
* |
||||
* * Neither the names of the copyright holders nor the names of the contributors |
||||
* may be used to endorse or promote products derived from this software |
||||
* without specific prior written permission. |
||||
* |
||||
* This software is provided by the copyright holders and contributors "as is" and |
||||
* any express or implied warranties, including, but not limited to, the implied |
||||
* warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
* In no event shall copyright holders or contributors be liable for any direct, |
||||
* indirect, incidental, special, exemplary, or consequential damages |
||||
* (including, but not limited to, procurement of substitute goods or services; |
||||
* loss of use, data, or profits; or business interruption) however caused |
||||
* and on any theory of liability, whether in contract, strict liability, |
||||
* or tort(including negligence or otherwise) arising in any way out of |
||||
* the use of this software, even if advised of the possibility of such damage. |
||||
*/ |
||||
|
||||
#include "perf_precomp.hpp" |
||||
|
||||
namespace cvtest |
||||
{ |
||||
|
||||
using std::tr1::tuple; |
||||
using std::tr1::get; |
||||
using namespace perf; |
||||
using namespace testing; |
||||
using namespace cv; |
||||
using namespace cv::ximgproc; |
||||
|
||||
typedef tuple<Size, MatType, int> L0SmoothTestParam; |
||||
typedef TestBaseWithParam<L0SmoothTestParam> L0SmoothTest; |
||||
|
||||
PERF_TEST_P(L0SmoothTest, perf, |
||||
Combine( |
||||
SZ_TYPICAL, |
||||
Values(CV_8U, CV_16U, CV_32F, CV_64F), |
||||
Values(1, 3)) |
||||
) |
||||
{ |
||||
L0SmoothTestParam params = GetParam(); |
||||
Size sz = get<0>(params); |
||||
int depth = get<1>(params); |
||||
int srcCn = get<2>(params); |
||||
|
||||
Mat src(sz, CV_MAKE_TYPE(depth, srcCn)); |
||||
Mat dst(sz, src.type()); |
||||
|
||||
cv::setNumThreads(cv::getNumberOfCPUs()); |
||||
declare.in(src, WARMUP_RNG).out(dst).tbb_threads(cv::getNumberOfCPUs()); |
||||
|
||||
RNG rnd(sz.height + depth + srcCn); |
||||
double lambda = rnd.uniform(0.01, 0.05); |
||||
double kappa = rnd.uniform(1.0, 3.0); |
||||
|
||||
TEST_CYCLE_N(1) |
||||
{ |
||||
l0Smooth(src, dst, lambda, kappa); |
||||
} |
||||
|
||||
SANITY_CHECK_NOTHING(); |
||||
} |
||||
} |
@ -0,0 +1,391 @@ |
||||
/*
|
||||
* By downloading, copying, installing or using the software you agree to this license. |
||||
* If you do not agree to this license, do not download, install, |
||||
* copy or use the software. |
||||
* |
||||
* |
||||
* License Agreement |
||||
* For Open Source Computer Vision Library |
||||
* (3 - clause BSD License) |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without modification, |
||||
* are permitted provided that the following conditions are met : |
||||
* |
||||
* *Redistributions of source code must retain the above copyright notice, |
||||
* this list of conditions and the following disclaimer. |
||||
* |
||||
* * Redistributions in binary form must reproduce the above copyright notice, |
||||
* this list of conditions and the following disclaimer in the documentation |
||||
* and / or other materials provided with the distribution. |
||||
* |
||||
* * Neither the names of the copyright holders nor the names of the contributors |
||||
* may be used to endorse or promote products derived from this software |
||||
* without specific prior written permission. |
||||
* |
||||
* This software is provided by the copyright holders and contributors "as is" and |
||||
* any express or implied warranties, including, but not limited to, the implied |
||||
* warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
* In no event shall copyright holders or contributors be liable for any direct, |
||||
* indirect, incidental, special, exemplary, or consequential damages |
||||
* (including, but not limited to, procurement of substitute goods or services; |
||||
* loss of use, data, or profits; or business interruption) however caused |
||||
* and on any theory of liability, whether in contract, strict liability, |
||||
* or tort(including negligence or otherwise) arising in any way out of |
||||
* the use of this software, even if advised of the possibility of such damage. |
||||
*/ |
||||
|
||||
#include "precomp.hpp" |
||||
#include <vector> |
||||
#include <opencv2/core.hpp> |
||||
#include <opencv2/imgproc.hpp> |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
namespace |
||||
{ |
||||
|
||||
class ParallelDft : public ParallelLoopBody |
||||
{ |
||||
private: |
||||
vector<Mat> src_; |
||||
public: |
||||
ParallelDft(vector<Mat> &s) |
||||
{ |
||||
src_ = s; |
||||
} |
||||
void operator() (const Range& range) const |
||||
{ |
||||
for (int i = range.start; i != range.end; i++) |
||||
{ |
||||
dft(src_[i], src_[i]); |
||||
} |
||||
} |
||||
}; |
||||
|
||||
class ParallelIdft : public ParallelLoopBody |
||||
{ |
||||
private: |
||||
vector<Mat> src_; |
||||
public: |
||||
ParallelIdft(vector<Mat> &s) |
||||
{ |
||||
src_ = s; |
||||
} |
||||
void operator() (const Range& range) const |
||||
{ |
||||
for (int i = range.start; i != range.end; i++) |
||||
{ |
||||
idft(src_[i], src_[i],DFT_SCALE); |
||||
} |
||||
} |
||||
}; |
||||
|
||||
class ParallelDivComplexByReal : public ParallelLoopBody |
||||
{ |
||||
private: |
||||
vector<Mat> numer_; |
||||
vector<Mat> denom_; |
||||
vector<Mat> dst_; |
||||
|
||||
public: |
||||
ParallelDivComplexByReal(vector<Mat> &numer, vector<Mat> &denom, vector<Mat> &dst) |
||||
{ |
||||
numer_ = numer; |
||||
denom_ = denom; |
||||
dst_ = dst; |
||||
} |
||||
void operator() (const Range& range) const |
||||
{ |
||||
for (int i = range.start; i != range.end; i++) |
||||
{ |
||||
Mat aPanels[2]; |
||||
Mat bPanels[2]; |
||||
split(numer_[i], aPanels); |
||||
split(denom_[i], bPanels); |
||||
|
||||
Mat realPart; |
||||
Mat imaginaryPart; |
||||
|
||||
divide(aPanels[0], denom_[i], realPart); |
||||
divide(aPanels[1], denom_[i], imaginaryPart); |
||||
|
||||
aPanels[0] = realPart; |
||||
aPanels[1] = imaginaryPart; |
||||
|
||||
merge(aPanels, 2, dst_[i]); |
||||
} |
||||
} |
||||
}; |
||||
|
||||
|
||||
void shift(InputArray src, OutputArray dst, int shift_x, int shift_y) |
||||
{ |
||||
Mat S = src.getMat(); |
||||
Mat D = dst.getMat(); |
||||
|
||||
if(S.data == D.data) |
||||
{ |
||||
S = S.clone(); |
||||
} |
||||
|
||||
D.create(S.size(), S.type()); |
||||
|
||||
Mat s0(S, Rect(0, 0, S.cols - shift_x, S.rows - shift_y)); |
||||
Mat s1(S, Rect(S.cols - shift_x, 0, shift_x, S.rows - shift_y)); |
||||
Mat s2(S, Rect(0, S.rows - shift_y, S.cols-shift_x, shift_y)); |
||||
Mat s3(S, Rect(S.cols - shift_x, S.rows- shift_y, shift_x, shift_y)); |
||||
|
||||
Mat d0(D, Rect(shift_x, shift_y, S.cols - shift_x, S.rows - shift_y)); |
||||
Mat d1(D, Rect(0, shift_y, shift_x, S.rows - shift_y)); |
||||
Mat d2(D, Rect(shift_x, 0, S.cols-shift_x, shift_y)); |
||||
Mat d3(D, Rect(0,0,shift_x, shift_y)); |
||||
|
||||
s0.copyTo(d0); |
||||
s1.copyTo(d1); |
||||
s2.copyTo(d2); |
||||
s3.copyTo(d3); |
||||
} |
||||
|
||||
// dft after padding imaginary
|
||||
void fft(InputArray src, OutputArray dst) |
||||
{ |
||||
Mat S = src.getMat(); |
||||
Mat planes[] = {S.clone(), Mat::zeros(S.size(), S.type())}; |
||||
Mat x; |
||||
merge(planes, 2, dst); |
||||
|
||||
// compute the result
|
||||
dft(dst, dst); |
||||
} |
||||
|
||||
void psf2otf(InputArray src, OutputArray dst, int height, int width) |
||||
{ |
||||
Mat S = src.getMat(); |
||||
Mat D = dst.getMat(); |
||||
|
||||
Mat padded; |
||||
|
||||
if(S.data == D.data){ |
||||
S = S.clone(); |
||||
} |
||||
|
||||
// add padding
|
||||
copyMakeBorder(S, padded, 0, height - S.rows, 0, width - S.cols, |
||||
BORDER_CONSTANT, Scalar::all(0)); |
||||
|
||||
shift(padded, padded, width - S.cols / 2, height - S.rows / 2); |
||||
|
||||
// convert to frequency domain
|
||||
fft(padded, dst); |
||||
} |
||||
|
||||
void dftMultiChannel(InputArray src, vector<Mat> &dst) |
||||
{ |
||||
Mat S = src.getMat(); |
||||
|
||||
split(S, dst); |
||||
|
||||
for(int i = 0; i < S.channels(); i++){ |
||||
Mat planes[] = {dst[i].clone(), Mat::zeros(dst[i].size(), dst[i].type())}; |
||||
merge(planes, 2, dst[i]); |
||||
} |
||||
|
||||
parallel_for_(cv::Range(0,S.channels()), ParallelDft(dst)); |
||||
|
||||
} |
||||
|
||||
void idftMultiChannel(const vector<Mat> &src, OutputArray dst) |
||||
{ |
||||
vector<Mat> channels(src); |
||||
|
||||
parallel_for_(Range(0, int(src.size())), ParallelIdft(channels)); |
||||
|
||||
for(int i = 0; unsigned(i) < src.size(); i++){ |
||||
Mat panels[2]; |
||||
split(channels[i], panels); |
||||
channels[i] = panels[0]; |
||||
} |
||||
|
||||
Mat D; |
||||
merge(channels, D); |
||||
D.copyTo(dst); |
||||
} |
||||
|
||||
void addComplex(InputArray aSrc, int bSrc, OutputArray dst) |
||||
{ |
||||
Mat panels[2]; |
||||
split(aSrc.getMat(), panels); |
||||
panels[0] = panels[0] + bSrc; |
||||
merge(panels, 2, dst); |
||||
} |
||||
|
||||
void divComplexByRealMultiChannel(vector<Mat> &numer, |
||||
vector<Mat> &denom, vector<Mat> &dst) |
||||
{ |
||||
|
||||
for(int i = 0; unsigned(i) < numer.size(); i++) |
||||
{ |
||||
dst[i].create(numer[i].size(), numer[i].type()); |
||||
} |
||||
parallel_for_(Range(0, int(numer.size())), ParallelDivComplexByReal(numer, denom, dst)); |
||||
|
||||
} |
||||
|
||||
// power of 2 of the absolute value of the complex
|
||||
Mat pow2absComplex(InputArray src) |
||||
{ |
||||
Mat S = src.getMat(); |
||||
|
||||
Mat sPanels[2]; |
||||
split(S, sPanels); |
||||
|
||||
Mat mag; |
||||
magnitude(sPanels[0], sPanels[1], mag); |
||||
pow(mag, 2, mag); |
||||
|
||||
return mag; |
||||
} |
||||
} |
||||
|
||||
namespace cv |
||||
{ |
||||
namespace ximgproc |
||||
{ |
||||
|
||||
void l0Smooth(InputArray src, OutputArray dst, double lambda, double kappa) |
||||
{ |
||||
Mat S = src.getMat(); |
||||
|
||||
CV_Assert(!S.empty()); |
||||
CV_Assert(S.depth() == CV_8U || S.depth() == CV_16U |
||||
|| S.depth() == CV_32F || S.depth() == CV_64F); |
||||
|
||||
dst.create(src.size(), src.type()); |
||||
|
||||
if(S.data == dst.getMat().data) |
||||
{ |
||||
S = S.clone(); |
||||
} |
||||
|
||||
if(S.depth() == CV_8U) |
||||
{ |
||||
S.convertTo(S, CV_32F, 1/255.0f); |
||||
} |
||||
else if(S.depth() == CV_16U) |
||||
{ |
||||
S.convertTo(S, CV_32F, 1/65535.0f); |
||||
} |
||||
else if(S.depth() == CV_64F) |
||||
{ |
||||
S.convertTo(S, CV_32F); |
||||
} |
||||
|
||||
const double betaMax = 100000; |
||||
|
||||
// gradient operators in frequency domain
|
||||
Mat otfFx, otfFy; |
||||
float kernel[2] = {-1, 1}; |
||||
float kernel_inv[2] = {1,-1}; |
||||
psf2otf(Mat(1,2,CV_32FC1, kernel_inv), otfFx, S.rows, S.cols); |
||||
psf2otf(Mat(2,1,CV_32FC1, kernel_inv), otfFy, S.rows, S.cols); |
||||
|
||||
vector<Mat> denomConst; |
||||
Mat tmp = pow2absComplex(otfFx) + pow2absComplex(otfFy); |
||||
|
||||
for(int i = 0; i < S.channels(); i++) |
||||
{ |
||||
denomConst.push_back(tmp); |
||||
} |
||||
|
||||
// input image in frequency domain
|
||||
vector<Mat> numerConst; |
||||
dftMultiChannel(S, numerConst); |
||||
/*********************************
|
||||
* solver |
||||
*********************************/ |
||||
double beta = 2 * lambda; |
||||
while(beta < betaMax){ |
||||
// h, v subproblem
|
||||
Mat h, v; |
||||
|
||||
filter2D(S, h, -1, Mat(1, 2, CV_32FC1, kernel), Point(0, 0), |
||||
0, BORDER_REPLICATE); |
||||
filter2D(S, v, -1, Mat(2, 1, CV_32FC1, kernel), Point(0, 0), |
||||
0, BORDER_REPLICATE); |
||||
|
||||
Mat hvMag = h.mul(h) + v.mul(v); |
||||
|
||||
Mat mask; |
||||
if(S.channels() == 1) |
||||
{ |
||||
threshold(hvMag, mask, lambda/beta, 1, THRESH_BINARY); |
||||
} |
||||
else if(S.channels() > 1) |
||||
{ |
||||
vector<Mat> channels(S.channels()); |
||||
split(hvMag, channels); |
||||
hvMag = channels[0]; |
||||
|
||||
for(int i = 1; i < S.channels(); i++) |
||||
{ |
||||
hvMag = hvMag + channels[i]; |
||||
} |
||||
|
||||
threshold(hvMag, mask, lambda/beta, 1, THRESH_BINARY); |
||||
|
||||
Mat in[] = {mask, mask, mask}; |
||||
merge(in, 3, mask); |
||||
} |
||||
|
||||
h = h.mul(mask); |
||||
v = v.mul(mask); |
||||
|
||||
// S subproblem
|
||||
vector<Mat> denom(S.channels()); |
||||
for(int i = 0; i < S.channels(); i++) |
||||
{ |
||||
denom[i] = beta * denomConst[i] + 1; |
||||
} |
||||
|
||||
Mat hGrad, vGrad; |
||||
filter2D(h, hGrad, -1, Mat(1, 2, CV_32FC1, kernel_inv)); |
||||
filter2D(v, vGrad, -1, Mat(2, 1, CV_32FC1, kernel_inv)); |
||||
|
||||
vector<Mat> hvGradFreq; |
||||
dftMultiChannel(hGrad+vGrad, hvGradFreq); |
||||
|
||||
vector<Mat> numer(S.channels()); |
||||
for(int i = 0; i < S.channels(); i++) |
||||
{ |
||||
numer[i] = numerConst[i] + hvGradFreq[i] * beta; |
||||
} |
||||
|
||||
vector<Mat> sFreq(S.channels()); |
||||
divComplexByRealMultiChannel(numer, denom, sFreq); |
||||
|
||||
idftMultiChannel(sFreq, S); |
||||
|
||||
beta = beta * kappa; |
||||
} |
||||
|
||||
Mat D = dst.getMat(); |
||||
if(D.depth() == CV_8U) |
||||
{ |
||||
S.convertTo(D, CV_8U, 255); |
||||
} |
||||
else if(D.depth() == CV_16U) |
||||
{ |
||||
S.convertTo(D, CV_16U, 65535); |
||||
} |
||||
else if(D.depth() == CV_64F) |
||||
{ |
||||
S.convertTo(D, CV_64F); |
||||
} |
||||
else |
||||
{ |
||||
S.copyTo(D); |
||||
} |
||||
} |
||||
} |
||||
} |
@ -0,0 +1,120 @@ |
||||
/*
|
||||
* By downloading, copying, installing or using the software you agree to this license. |
||||
* If you do not agree to this license, do not download, install, |
||||
* copy or use the software. |
||||
* |
||||
* |
||||
* License Agreement |
||||
* For Open Source Computer Vision Library |
||||
* (3 - clause BSD License) |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without modification, |
||||
* are permitted provided that the following conditions are met : |
||||
* |
||||
* *Redistributions of source code must retain the above copyright notice, |
||||
* this list of conditions and the following disclaimer. |
||||
* |
||||
* * Redistributions in binary form must reproduce the above copyright notice, |
||||
* this list of conditions and the following disclaimer in the documentation |
||||
* and / or other materials provided with the distribution. |
||||
* |
||||
* * Neither the names of the copyright holders nor the names of the contributors |
||||
* may be used to endorse or promote products derived from this software |
||||
* without specific prior written permission. |
||||
* |
||||
* This software is provided by the copyright holders and contributors "as is" and |
||||
* any express or implied warranties, including, but not limited to, the implied |
||||
* warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
* In no event shall copyright holders or contributors be liable for any direct, |
||||
* indirect, incidental, special, exemplary, or consequential damages |
||||
* (including, but not limited to, procurement of substitute goods or services; |
||||
* loss of use, data, or profits; or business interruption) however caused |
||||
* and on any theory of liability, whether in contract, strict liability, |
||||
* or tort(including negligence or otherwise) arising in any way out of |
||||
* the use of this software, even if advised of the possibility of such damage. |
||||
*/ |
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
namespace cvtest |
||||
{ |
||||
|
||||
using namespace std; |
||||
using namespace std::tr1; |
||||
using namespace testing; |
||||
using namespace perf; |
||||
using namespace cv; |
||||
using namespace cv::ximgproc; |
||||
|
||||
CV_ENUM(SrcTypes, CV_8UC1, CV_8UC3, CV_16UC1, CV_16UC3); |
||||
typedef tuple<Size, SrcTypes> L0SmoothParams; |
||||
typedef TestWithParam<L0SmoothParams> L0SmoothTest; |
||||
|
||||
TEST(L0SmoothTest, SplatSurfaceAccuracy) |
||||
{ |
||||
RNG rnd(0); |
||||
|
||||
for (int i = 0; i < 3; i++) |
||||
{ |
||||
Size sz(rnd.uniform(512, 1024), rnd.uniform(512, 1024)); |
||||
|
||||
Scalar surfaceValue; |
||||
int srcCn = 3; |
||||
rnd.fill(surfaceValue, RNG::UNIFORM, 0, 255); |
||||
Mat src(sz, CV_MAKE_TYPE(CV_8U, srcCn), surfaceValue); |
||||
|
||||
double lambda = rnd.uniform(0.01, 0.05); |
||||
double kappa = rnd.uniform(1.5, 5.0); |
||||
|
||||
Mat res; |
||||
l0Smooth(src, res, lambda, kappa); |
||||
|
||||
// When filtering a constant image we should get the same image:
|
||||
double normL1 = cvtest::norm(src, res, NORM_L1)/src.total()/src.channels(); |
||||
EXPECT_LE(normL1, 1.0/64); |
||||
} |
||||
} |
||||
|
||||
TEST_P(L0SmoothTest, MultiThreadReproducibility) |
||||
{ |
||||
if (cv::getNumberOfCPUs() == 1) |
||||
return; |
||||
|
||||
double MAX_DIF = 10.0; |
||||
double MAX_MEAN_DIF = 1.0 / 8.0; |
||||
int loopsCount = 2; |
||||
RNG rng(0); |
||||
|
||||
L0SmoothParams params = GetParam(); |
||||
Size size = get<0>(params); |
||||
int srcType = get<1>(params); |
||||
|
||||
Mat src(size,srcType); |
||||
if(src.depth()==CV_8U) |
||||
randu(src, 0, 255); |
||||
else if(src.depth()==CV_16U) |
||||
randu(src, 0, 65535); |
||||
else |
||||
randu(src, -100000.0f, 100000.0f); |
||||
|
||||
|
||||
for (int iter = 0; iter <= loopsCount; iter++) |
||||
{ |
||||
double lambda = rng.uniform(0.01, 0.05); |
||||
double kappa = rng.uniform(1.5, 5.0); |
||||
|
||||
cv::setNumThreads(cv::getNumberOfCPUs()); |
||||
Mat resMultiThread; |
||||
l0Smooth(src, resMultiThread, lambda, kappa); |
||||
|
||||
cv::setNumThreads(1); |
||||
Mat resSingleThread; |
||||
l0Smooth(src, resSingleThread, lambda, kappa); |
||||
|
||||
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_INF), MAX_DIF); |
||||
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_L1), MAX_MEAN_DIF*src.total()*src.channels()); |
||||
} |
||||
} |
||||
INSTANTIATE_TEST_CASE_P(FullSet, L0SmoothTest,Combine(Values(szODD, szQVGA), SrcTypes::all())); |
||||
|
||||
} |
Loading…
Reference in new issue