|
|
|
#include "test_precomp.hpp"
|
|
|
|
|
|
|
|
namespace cvtest
|
|
|
|
{
|
|
|
|
TEST(xphoto_dctimagedenoising, regression)
|
|
|
|
{
|
|
|
|
cv::String dir = cvtest::TS::ptr()->get_data_path() + "dct_image_denoising/";
|
|
|
|
int nTests = 1;
|
|
|
|
|
|
|
|
float psnrThreshold[] = {0.5};
|
|
|
|
|
|
|
|
int psize[] = {8};
|
|
|
|
double sigma[] = {9.0};
|
|
|
|
|
|
|
|
for (int i = 0; i < nTests; ++i)
|
|
|
|
{
|
|
|
|
cv::String srcName = dir + cv::format( "sources/%02d.png", i + 1);
|
|
|
|
cv::Mat src = cv::imread( srcName, 1 );
|
|
|
|
|
|
|
|
cv::String previousResultName = dir + cv::format( "results/%02d.png", i + 1 );
|
|
|
|
cv::Mat previousResult = cv::imread( previousResultName, 1 );
|
|
|
|
|
|
|
|
cv::Mat sqrError = ( src - previousResult ).mul( src - previousResult );
|
|
|
|
cv::Scalar mse = cv::sum(sqrError) / cv::Scalar::all( sqrError.total()*sqrError.channels() );
|
|
|
|
double psnr = 10*log10(3*255*255/(mse[0] + mse[1] + mse[2]));
|
|
|
|
|
|
|
|
|
|
|
|
cv::Mat currentResult, fastNlMeansResult;
|
|
|
|
|
|
|
|
cv::dctDenoising(src, currentResult, sigma[i], psize[i]);
|
|
|
|
|
|
|
|
cv::Mat sqrError = ( currentResult - previousResult )
|
|
|
|
.mul( currentResult - previousResult );
|
|
|
|
cv::Scalar mse = cv::sum(sqrError) / cv::Scalar::all( sqrError.total()*sqrError.channels() );
|
|
|
|
double psnr = 10*log10(3*255*255/(mse[0] + mse[1] + mse[2])) - psnr;
|
|
|
|
|
|
|
|
EXPECT_GE( psnr, psnrThreshold[i] );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|