|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "../precomp.hpp"
|
|
|
|
#include <opencv2/core/ocl.hpp>
|
|
|
|
#include "layers_common.hpp"
|
|
|
|
#include "convolution_layer.hpp"
|
|
|
|
#include "op_im2col.hpp"
|
|
|
|
#include "op_blas.hpp"
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
#include <iostream>
|
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
namespace dnn
|
|
|
|
{
|
|
|
|
|
|
|
|
ConvolutionLayerImpl::ConvolutionLayerImpl()
|
|
|
|
{
|
|
|
|
tryUseOpenCL = false; //true;
|
|
|
|
numOutput = -1;
|
|
|
|
group = -1;
|
|
|
|
|
|
|
|
#if HAVE_CBLAS
|
|
|
|
if (getBlasThreads() != cv::getThreadNum())
|
|
|
|
{
|
|
|
|
setBlasThreads(cv::getThreadNum());
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void ConvolutionLayerImpl::init()
|
|
|
|
{
|
|
|
|
CV_Assert(1 <= blobs.size() && blobs.size() <= 2);
|
|
|
|
|
|
|
|
bias = (blobs.size() >= 2);
|
|
|
|
numOutput = blobs[0].num();
|
|
|
|
|
|
|
|
CV_Assert(blobs[0].dims() == 4 && blobs[0].cols() == kernel.width && blobs[0].rows() == kernel.height);
|
|
|
|
CV_Assert(!bias || blobs[1].total() == (size_t)blobs[0].num());
|
|
|
|
|
|
|
|
//TODO: dilation in OCL mode
|
|
|
|
useOpenCL = ocl::useOpenCL() && tryUseOpenCL && dilation == Size(1, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ConvolutionLayerImpl::allocate(const std::vector<Blob*> &inputs, std::vector<Blob> &outputs)
|
|
|
|
{
|
|
|
|
init();
|
|
|
|
|
|
|
|
CV_Assert(inputs.size() > 0);
|
|
|
|
const Blob &input = *inputs[0];
|
|
|
|
CV_Assert(input.dims() == 4 && (input.type() == CV_32F || input.type() == CV_64F));
|
|
|
|
computeInpOutShape(input);
|
|
|
|
|
|
|
|
group = inpCn / blobs[0].channels();
|
|
|
|
CV_Assert(inpCn % group == 0 && outCn % group == 0);
|
|
|
|
CV_Assert(blobs[0].num() == outCn && blobs[0].channels() == inpCn / group);
|
|
|
|
|
|
|
|
outGroupCn = outCn / group;
|
|
|
|
inpGroupCn = inpCn / group;
|
|
|
|
ksize = inpGroupCn * kernel.height * kernel.width;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < inputs.size(); i++)
|
|
|
|
{
|
|
|
|
CV_Assert(inputs[i]->type() == input.type());
|
|
|
|
CV_Assert(inputs[i]->dims() == 4 && inputs[i]->channels() == input.channels());
|
|
|
|
CV_Assert(inputs[i]->rows() == input.rows() && inputs[i]->cols() == input.cols());
|
|
|
|
}
|
|
|
|
|
|
|
|
int allocFlags = useOpenCL ? Blob::ALLOC_UMAT : Blob::ALLOC_MAT;
|
|
|
|
|
|
|
|
if (!is1x1())
|
|
|
|
{
|
|
|
|
colBlob.create(Shape(ksize, outH * outW), input.type(), allocFlags);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bias)
|
|
|
|
{
|
|
|
|
biasOnesBlob.create(Shape(1, topH * topW), input.type(), allocFlags);
|
|
|
|
biasOnesBlob.setTo(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
outputs.resize(inputs.size());
|
|
|
|
for (size_t i = 0; i < inputs.size(); i++)
|
|
|
|
{
|
|
|
|
outputs[i].create(Shape(inputs[i]->num(), topCn, topH, topW), input.type(), allocFlags);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool ConvolutionLayerImpl::is1x1() const
|
|
|
|
{
|
|
|
|
return (kernel.height == 1 && kernel.width == 1) &&
|
|
|
|
(stride.height == 1 && stride.width == 1) &&
|
|
|
|
(dilation.height == 1 && dilation.width == 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename XMat>
|
|
|
|
void ConvolutionLayerImpl::forward_(std::vector<Blob*> &inputs, std::vector<Blob> &outputs)
|
|
|
|
{
|
|
|
|
XMat weightsMat = reshaped(blobs[0].getRefConst<XMat>(), Shape(outCn, ksize));
|
|
|
|
XMat biasesMat = (bias) ? reshaped(blobs[1].getRefConst<XMat>(), Shape(outCn, 1)) : XMat();
|
|
|
|
|
|
|
|
for (size_t ii = 0; ii < outputs.size(); ii++)
|
|
|
|
{
|
|
|
|
int numImg = inputs[ii]->size(0);
|
|
|
|
XMat inpMat = inputs[ii]->getRefConst<XMat>();
|
|
|
|
XMat outMat = reshaped(outputs[ii].getRef<XMat>(), Shape(numImg*group*outGroupCn, outH*outW));
|
|
|
|
|
|
|
|
for (int n = 0; n < numImg; n++)
|
|
|
|
{
|
|
|
|
for (int g = 0; g < group; g++)
|
|
|
|
{
|
|
|
|
XMat colMat, curInp = slice(inpMat, n, _Range(g * inpGroupCn, inpGroupCn));
|
|
|
|
im2col(curInp, colMat);
|
|
|
|
|
|
|
|
_Range kerRange(g * outGroupCn, outGroupCn);
|
|
|
|
XMat kerMat = weightsMat.rowRange(kerRange);
|
|
|
|
|
|
|
|
_Range outRange((g + n * group) * outGroupCn, outGroupCn);
|
|
|
|
XMat dstMat = outMat.rowRange(outRange);
|
|
|
|
|
|
|
|
dnn::gemm(kerMat, colMat, 1, dstMat, 0);
|
|
|
|
|
|
|
|
if (bias)
|
|
|
|
{
|
|
|
|
dnn::gemm(biasesMat.rowRange(kerRange), biasOnesBlob.getRefConst<XMat>(), 1, dstMat, 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ConvolutionLayerImpl::forward(std::vector<Blob*> &inputs, std::vector<Blob> &outputs)
|
|
|
|
{
|
|
|
|
if (!useOpenCL)
|
|
|
|
forward_<Mat>(inputs, outputs);
|
|
|
|
else
|
|
|
|
forward_<UMat>(inputs, outputs);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ConvolutionLayerImpl::im2col(const UMat &srcImg, UMat &dstCol)
|
|
|
|
{
|
|
|
|
if (is1x1())
|
|
|
|
{
|
|
|
|
dstCol = reshaped(srcImg, Shape(ksize, outH*outW));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
CV_Assert(im2col_ocl(srcImg, inpGroupCn, inpH, inpW, kernel.height, kernel.width, pad.height, pad.width, stride.height, stride.width, dilation.height, dilation.width, this->colBlob.umatRef()));
|
|
|
|
dstCol = this->colBlob.umatRefConst();
|
|
|
|
#else
|
|
|
|
CV_Error(Error::StsInternal, "");
|
|
|
|
dstCol = srcImg; //supress warning
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void ConvolutionLayerImpl::im2col(const Mat &srcImg, Mat &dstCol)
|
|
|
|
{
|
|
|
|
if (is1x1())
|
|
|
|
{
|
|
|
|
dstCol = reshaped(srcImg, Shape(ksize, outH*outW));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat &colMat = colBlob.matRef();
|
|
|
|
if (srcImg.type() == CV_32F)
|
|
|
|
im2col_CpuPBody<float>::run(srcImg.ptr<float>(), inpGroupCn, inpH, inpW, kernel.height,
|
|
|
|
kernel.width, pad.height, pad.width, stride.height, stride.width,
|
|
|
|
dilation.height, dilation.width, outH, outW, colMat.ptr<float>());
|
|
|
|
if (srcImg.type() == CV_64F)
|
|
|
|
im2col_CpuPBody<double>::run(srcImg.ptr<double>(), inpGroupCn, inpH, inpW, kernel.height,
|
|
|
|
kernel.width, pad.height, pad.width, stride.height, stride.width,
|
|
|
|
dilation.height, dilation.width, outH, outW, colMat.ptr<double>());
|
|
|
|
|
|
|
|
dstCol = colMat;
|
|
|
|
}
|
|
|
|
|
|
|
|
void ConvolutionLayerImpl::computeInpOutShape(const Blob &input)
|
|
|
|
{
|
|
|
|
inpH = input.rows();
|
|
|
|
inpW = input.cols();
|
|
|
|
inpCn = input.channels();
|
|
|
|
outCn = numOutput;
|
|
|
|
|
|
|
|
if (padMode.empty())
|
|
|
|
{
|
|
|
|
outH = (inpH + 2 * pad.height - (dilation.height * (kernel.height - 1) + 1)) / stride.height + 1;
|
|
|
|
outW = (inpW + 2 * pad.width - (dilation.width * (kernel.width - 1) + 1)) / stride.width + 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
getConvPoolOutParams(inpH, inpW, kernel, stride, pad, padMode, outH, outW);
|
|
|
|
}
|
|
|
|
|
|
|
|
topH = outH; topW = outW; topCn = outCn;
|
|
|
|
}
|
|
|
|
|
|
|
|
//Deconvolution
|
|
|
|
|
|
|
|
DeConvolutionLayerImpl::DeConvolutionLayerImpl()
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
void DeConvolutionLayerImpl::computeInpOutShape(const Blob &inpBlob)
|
|
|
|
{
|
|
|
|
outH = inpBlob.rows();
|
|
|
|
outW = inpBlob.cols();
|
|
|
|
outCn = inpBlob.channels();
|
|
|
|
|
|
|
|
inpH = stride.height * (outH - 1) + kernel.height - 2 * pad.height;
|
|
|
|
inpW = stride.width * (outW - 1) + kernel.width - 2 * pad.width;
|
|
|
|
inpCn = numOutput;
|
|
|
|
|
|
|
|
topH = inpH; topW = inpW; topCn = inpCn;
|
|
|
|
}
|
|
|
|
|
|
|
|
void DeConvolutionLayerImpl::forward(std::vector<Blob*> &inputs, std::vector<Blob> &outputs)
|
|
|
|
{
|
|
|
|
if (!useOpenCL)
|
|
|
|
forward_<Mat>(inputs, outputs);
|
|
|
|
else
|
|
|
|
forward_<UMat>(inputs, outputs);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename XMat>
|
|
|
|
void DeConvolutionLayerImpl::forward_(std::vector<Blob *> &inputs, std::vector<Blob> &outputs)
|
|
|
|
{
|
|
|
|
XMat weightsMat = reshaped(blobs[0].getRefConst<XMat>(), Shape(outCn, ksize));
|
|
|
|
XMat biasesMat = (bias) ? reshaped(blobs[1].getRefConst<XMat>(), Shape(outCn, 1)) : XMat();
|
|
|
|
|
|
|
|
for (size_t ii = 0; ii < outputs.size(); ii++)
|
|
|
|
{
|
|
|
|
int numImg = inputs[ii]->size(0);
|
|
|
|
XMat convBlob = reshaped(inputs[ii]->getRefConst<XMat>(), Shape(numImg*outCn, outH*outW));
|
|
|
|
XMat decnBlob = reshaped(outputs[ii].getRef<XMat>(), Shape(numImg*inpCn, inpH*inpW));
|
|
|
|
|
|
|
|
for (int n = 0; n < numImg; n++)
|
|
|
|
{
|
|
|
|
for (int g = 0; g < group; g++)
|
|
|
|
{
|
|
|
|
XMat dstMat = decnBlob.rowRange(_Range((g + n * group) * inpGroupCn, inpGroupCn));
|
|
|
|
XMat &colMat = (is1x1()) ? dstMat : colBlob.getRef<XMat>();
|
|
|
|
|
|
|
|
XMat convMat = convBlob.rowRange(_Range((g + n * group) * outGroupCn, outGroupCn));
|
|
|
|
XMat wghtMat = weightsMat.rowRange(_Range(g * outGroupCn, outGroupCn));
|
|
|
|
|
|
|
|
dnn::gemm(wghtMat, convMat, 1, colMat, 0, GEMM_1_T);
|
|
|
|
|
|
|
|
if (!is1x1())
|
|
|
|
col2im(colMat, dstMat);
|
|
|
|
|
|
|
|
if (bias)
|
|
|
|
{
|
|
|
|
XMat curBiasMat = biasesMat.rowRange(_Range(g * outGroupCn, outGroupCn));
|
|
|
|
dnn::gemm(curBiasMat, biasOnesBlob.getRefConst<XMat>(), 1, dstMat, 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void DeConvolutionLayerImpl::col2im(const Mat &colMat, Mat &dstImg)
|
|
|
|
{
|
|
|
|
if (is1x1())
|
|
|
|
{
|
|
|
|
dstImg = colMat;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (dstImg.type() == CV_32F)
|
|
|
|
col2im_CpuPBody<float>::run(colMat.ptr<float>(), inpGroupCn, inpH, inpW, kernel.height, kernel.width, pad.height, pad.width, stride.height, stride.width, dstImg.ptr<float>());
|
|
|
|
if (dstImg.type() == CV_64F)
|
|
|
|
col2im_CpuPBody<double>::run(colMat.ptr<double>(), inpGroupCn, inpH, inpW, kernel.height, kernel.width, pad.height, pad.width, stride.height, stride.width, dstImg.ptr<double>());
|
|
|
|
}
|
|
|
|
|
|
|
|
void DeConvolutionLayerImpl::col2im(const UMat &colMat, UMat &dstImg)
|
|
|
|
{
|
|
|
|
if (is1x1())
|
|
|
|
{
|
|
|
|
dstImg = colMat;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
CV_Assert(col2im_ocl(colMat, inpGroupCn, inpH, inpW, kernel.height, kernel.width, pad.height, pad.width, stride.height, stride.width, dstImg));
|
|
|
|
#else
|
|
|
|
CV_Error(Error::StsInternal, "");
|
|
|
|
dstImg = colMat;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//Initializers
|
|
|
|
|
|
|
|
Ptr<BaseConvolutionLayer> ConvolutionLayer::create(Size kernel, Size stride, Size pad, Size dilation)
|
|
|
|
{
|
|
|
|
ConvolutionLayerImpl *l = new ConvolutionLayerImpl();
|
|
|
|
l->kernel = kernel;
|
|
|
|
l->pad = pad;
|
|
|
|
l->stride = stride;
|
|
|
|
l->dilation = dilation;
|
|
|
|
return Ptr<BaseConvolutionLayer>(l);
|
|
|
|
}
|
|
|
|
|
|
|
|
Ptr<BaseConvolutionLayer> DeconvolutionLayer::create(Size kernel, Size stride, Size pad, Size dilation)
|
|
|
|
{
|
|
|
|
DeConvolutionLayerImpl *l = new DeConvolutionLayerImpl();
|
|
|
|
l->kernel = kernel;
|
|
|
|
l->pad = pad;
|
|
|
|
l->stride = stride;
|
|
|
|
l->dilation = dilation;
|
|
|
|
return Ptr<BaseConvolutionLayer>(l);
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|