|
|
|
/*
|
|
|
|
* cropped_word_recognition.cpp
|
|
|
|
*
|
|
|
|
* A demo program of text recognition in a given cropped word.
|
|
|
|
* Shows the use of the OCRBeamSearchDecoder class API using the provided default classifier.
|
|
|
|
*
|
|
|
|
* Created on: Jul 9, 2015
|
|
|
|
* Author: Lluis Gomez i Bigorda <lgomez AT cvc.uab.es>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "opencv2/text.hpp"
|
|
|
|
#include "opencv2/core/utility.hpp"
|
|
|
|
#include "opencv2/highgui.hpp"
|
|
|
|
#include "opencv2/imgproc.hpp"
|
|
|
|
|
|
|
|
#include <iostream>
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::text;
|
|
|
|
|
|
|
|
int main(int argc, char* argv[])
|
|
|
|
{
|
|
|
|
|
|
|
|
cout << endl << argv[0] << endl << endl;
|
|
|
|
cout << "A demo program of Scene Text cropped word Recognition: " << endl;
|
|
|
|
cout << "Shows the use of the OCRBeamSearchDecoder class using the Single Layer CNN character classifier described in:" << endl;
|
|
|
|
cout << "Coates, Adam, et al. \"Text detection and character recognition in scene images with unsupervised feature learning.\" ICDAR 2011." << endl << endl;
|
|
|
|
|
|
|
|
Mat image;
|
|
|
|
if(argc>1)
|
|
|
|
image = imread(argv[1]);
|
|
|
|
else
|
|
|
|
{
|
|
|
|
cout << " Usage: " << argv[0] << " <input_image>" << endl << endl;
|
|
|
|
return(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
string vocabulary = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; // must have the same order as the clasifier output classes
|
|
|
|
vector<string> lexicon; // a list of words expected to be found on the input image
|
|
|
|
lexicon.push_back(string("abb"));
|
|
|
|
lexicon.push_back(string("patata"));
|
|
|
|
lexicon.push_back(string("CHINA"));
|
|
|
|
lexicon.push_back(string("HERE"));
|
|
|
|
lexicon.push_back(string("President"));
|
|
|
|
lexicon.push_back(string("smash"));
|
|
|
|
lexicon.push_back(string("KUALA"));
|
|
|
|
lexicon.push_back(string("NINTENDO"));
|
|
|
|
|
|
|
|
// Create tailored language model a small given lexicon
|
|
|
|
Mat transition_p;
|
|
|
|
createOCRHMMTransitionsTable(vocabulary,lexicon,transition_p);
|
|
|
|
|
|
|
|
// An alternative would be to load the default generic language model
|
|
|
|
// (created from ispell 42869 english words list)
|
|
|
|
/*Mat transition_p;
|
|
|
|
string filename = "OCRHMM_transitions_table.xml"; // TODO use same order for voc
|
|
|
|
FileStorage fs(filename, FileStorage::READ);
|
|
|
|
fs["transition_probabilities"] >> transition_p;
|
|
|
|
fs.release();*/
|
|
|
|
|
|
|
|
Mat emission_p = Mat::eye(62,62,CV_64FC1);
|
|
|
|
|
|
|
|
Ptr<OCRBeamSearchDecoder> ocr = OCRBeamSearchDecoder::create(
|
|
|
|
loadOCRBeamSearchClassifierCNN("OCRBeamSearch_CNN_model_data.xml.gz"),
|
|
|
|
vocabulary, transition_p, emission_p);
|
|
|
|
|
|
|
|
double t_r = (double)getTickCount();
|
|
|
|
string output;
|
|
|
|
|
|
|
|
vector<Rect> boxes;
|
|
|
|
vector<string> words;
|
|
|
|
vector<float> confidences;
|
|
|
|
ocr->run(image, output, &boxes, &words, &confidences, OCR_LEVEL_WORD);
|
|
|
|
|
|
|
|
cout << "OCR output = \"" << output << "\". Decoded in "
|
|
|
|
<< ((double)getTickCount() - t_r)*1000/getTickFrequency() << " ms." << endl << endl;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|