|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#include <opencv2/core/ocl.hpp>
|
|
|
|
#include <iostream>
|
|
|
|
#include "npy_blob.hpp"
|
|
|
|
#include <opencv2/dnn/all_layers.hpp>
|
|
|
|
|
|
|
|
namespace cvtest
|
|
|
|
{
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::dnn;
|
|
|
|
|
|
|
|
template<typename TString>
|
|
|
|
static String _tf(TString filename)
|
|
|
|
{
|
|
|
|
return (getOpenCVExtraDir() + "/dnn/layers/") + filename;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void testLayer(String basename, bool useCaffeModel = false, bool useCommonInputBlob = true)
|
|
|
|
{
|
|
|
|
String prototxt = _tf(basename + ".prototxt");
|
|
|
|
String caffemodel = _tf(basename + ".caffemodel");
|
|
|
|
|
|
|
|
String inpfile = (useCommonInputBlob) ? _tf("blob.npy") : _tf(basename + ".input.npy");
|
|
|
|
String outfile = _tf(basename + ".npy");
|
|
|
|
|
|
|
|
cv::setNumThreads(cv::getNumberOfCPUs());
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
{
|
|
|
|
Ptr<Importer> importer = createCaffeImporter(prototxt, (useCaffeModel) ? caffemodel : String());
|
|
|
|
ASSERT_TRUE(importer != NULL);
|
|
|
|
importer->populateNet(net);
|
|
|
|
}
|
|
|
|
|
|
|
|
Blob inp = blobFromNPY(inpfile);
|
|
|
|
Blob ref = blobFromNPY(outfile);
|
|
|
|
|
|
|
|
net.setBlob(".input", inp);
|
|
|
|
net.forward();
|
|
|
|
Blob out = net.getBlob("output");
|
|
|
|
|
|
|
|
normAssert(ref, out);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_Softmax, Accuracy)
|
|
|
|
{
|
|
|
|
testLayer("layer_softmax");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_LRN_spatial, Accuracy)
|
|
|
|
{
|
|
|
|
testLayer("layer_lrn_spatial");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_LRN_channels, Accuracy)
|
|
|
|
{
|
|
|
|
testLayer("layer_lrn_channels");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_Convolution, Accuracy)
|
|
|
|
{
|
|
|
|
testLayer("layer_convolution", true);
|
|
|
|
}
|
|
|
|
|
|
|
|
//TODO: move this test into separate file
|
|
|
|
TEST(Layer_Test_Convolution, AccuracyOCL)
|
|
|
|
{
|
|
|
|
if (cv::ocl::haveOpenCL())
|
|
|
|
{
|
|
|
|
cv::ocl::setUseOpenCL(true);
|
|
|
|
testLayer("layer_convolution", true);
|
|
|
|
cv::ocl::setUseOpenCL(false);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_InnerProduct, Accuracy)
|
|
|
|
{
|
|
|
|
testLayer("layer_inner_product", true);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_Pooling_max, Accuracy)
|
|
|
|
{
|
|
|
|
testLayer("layer_pooling_max");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_Pooling_ave, Accuracy)
|
|
|
|
{
|
|
|
|
testLayer("layer_pooling_ave");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_DeConvolution, Accuracy)
|
|
|
|
{
|
|
|
|
testLayer("layer_deconvolution", true, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_MVN, Accuracy)
|
|
|
|
{
|
|
|
|
testLayer("layer_mvn");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_Reshape, squeeze)
|
|
|
|
{
|
|
|
|
LayerParams params;
|
|
|
|
params.set("axis", 2);
|
|
|
|
params.set("num_axes", 1);
|
|
|
|
|
|
|
|
Blob inp(BlobShape(4, 3, 1, 2));
|
|
|
|
std::vector<Blob*> inpVec(1, &inp);
|
|
|
|
std::vector<Blob> outVec;
|
|
|
|
|
|
|
|
Ptr<Layer> rl = LayerFactory::createLayerInstance("Reshape", params);
|
|
|
|
rl->allocate(inpVec, outVec);
|
|
|
|
rl->forward(inpVec, outVec);
|
|
|
|
|
|
|
|
EXPECT_EQ(outVec[0].shape(), BlobShape(Vec3i(4, 3, 2)));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_Reshape_Split_Slice, Accuracy)
|
|
|
|
{
|
|
|
|
Net net;
|
|
|
|
{
|
|
|
|
Ptr<Importer> importer = createCaffeImporter(_tf("reshape_and_slice_routines.prototxt"));
|
|
|
|
ASSERT_TRUE(importer != NULL);
|
|
|
|
importer->populateNet(net);
|
|
|
|
}
|
|
|
|
|
|
|
|
Blob input(BlobShape(Vec2i(6, 12)));
|
|
|
|
RNG rng(0);
|
|
|
|
rng.fill(input.matRef(), RNG::UNIFORM, -1, 1);
|
|
|
|
|
|
|
|
net.setBlob(".input", input);
|
|
|
|
net.forward();
|
|
|
|
Blob output = net.getBlob("output");
|
|
|
|
|
|
|
|
normAssert(input, output);
|
|
|
|
}
|
|
|
|
|
|
|
|
enum RunLayerMode
|
|
|
|
{
|
|
|
|
ALLOC_ONLY = 1,
|
|
|
|
FORWARD_ONLY = 2,
|
|
|
|
ALLOC_AND_FORWARD = ALLOC_ONLY | FORWARD_ONLY
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef Ptr<std::vector<Blob*> > PtrToVecPtrBlob;
|
|
|
|
|
|
|
|
PtrToVecPtrBlob
|
|
|
|
runLayer(Ptr<Layer> layer, std::vector<Blob> &inpBlobs, std::vector<Blob> &outBlobs, int mode=ALLOC_AND_FORWARD)
|
|
|
|
{
|
|
|
|
PtrToVecPtrBlob inpPtrs( new std::vector<Blob*>() );
|
|
|
|
inpPtrs->reserve(inpBlobs.size());
|
|
|
|
for (size_t i = 0; i < inpBlobs.size(); i++)
|
|
|
|
inpPtrs->push_back(&inpBlobs[i]);
|
|
|
|
|
|
|
|
if (mode & ALLOC_ONLY) layer->allocate(*inpPtrs, outBlobs);
|
|
|
|
if (mode & FORWARD_ONLY) layer->forward(*inpPtrs, outBlobs);
|
|
|
|
|
|
|
|
return inpPtrs;
|
|
|
|
}
|
|
|
|
|
|
|
|
class Layer_LSTM_Test : public ::testing::Test
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
int numInp, numOut;
|
|
|
|
Blob Wh, Wx, b;
|
|
|
|
Ptr<LSTMLayer> layer;
|
|
|
|
std::vector<Blob> inputs, outputs;
|
|
|
|
|
|
|
|
Layer_LSTM_Test() {}
|
|
|
|
|
|
|
|
void init(const BlobShape &inpShape_, const BlobShape &outShape_)
|
|
|
|
{
|
|
|
|
numInp = inpShape_.total();
|
|
|
|
numOut = outShape_.total();
|
|
|
|
|
|
|
|
Wh = Blob(BlobShape(4 * numOut, numOut));
|
|
|
|
Wx = Blob(BlobShape(4 * numOut, numInp));
|
|
|
|
b = Blob(BlobShape(4 * numOut, 1));
|
|
|
|
|
|
|
|
layer = LSTMLayer::create();
|
|
|
|
layer->setWeights(Wh, Wx, b);
|
|
|
|
layer->setOutShape(outShape_);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_F(Layer_LSTM_Test, get_set_test)
|
|
|
|
{
|
|
|
|
BlobShape TN(4);
|
|
|
|
BlobShape inpShape(5, 3, 2), inpResShape = TN + inpShape;
|
|
|
|
BlobShape outShape(3, 1, 2), outResShape = TN + outShape;
|
|
|
|
|
|
|
|
init(inpShape, outShape);
|
|
|
|
layer->setProduceCellOutput(true);
|
|
|
|
layer->setUseTimstampsDim(false);
|
|
|
|
layer->setOutShape(outShape);
|
|
|
|
|
|
|
|
layer->setC(Blob(outResShape));
|
|
|
|
layer->setH(Blob(outResShape));
|
|
|
|
|
|
|
|
inputs.push_back(Blob(inpResShape));
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
|
|
|
|
EXPECT_EQ(2, outputs.size());
|
|
|
|
EXPECT_EQ(outResShape, outputs[0].shape());
|
|
|
|
EXPECT_EQ(outResShape, outputs[1].shape());
|
|
|
|
|
|
|
|
EXPECT_EQ(outResShape, layer->getC().shape());
|
|
|
|
EXPECT_EQ(outResShape, layer->getH().shape());
|
|
|
|
|
|
|
|
EXPECT_EQ(0, layer->inputNameToIndex("x"));
|
|
|
|
EXPECT_EQ(0, layer->outputNameToIndex("h"));
|
|
|
|
EXPECT_EQ(1, layer->outputNameToIndex("c"));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_LSTM_Test_Accuracy_with_, CaffeRecurrent)
|
|
|
|
{
|
|
|
|
Ptr<LSTMLayer> layer = LSTMLayer::create();
|
|
|
|
|
|
|
|
Blob Wx = blobFromNPY(_tf("lstm.prototxt.w_0.npy"));
|
|
|
|
Blob Wh = blobFromNPY(_tf("lstm.prototxt.w_2.npy"));
|
|
|
|
Blob b = blobFromNPY(_tf("lstm.prototxt.w_1.npy"));
|
|
|
|
layer->setWeights(Wh, Wx, b);
|
|
|
|
|
|
|
|
Blob inp = blobFromNPY(_tf("recurrent.input.npy"));
|
|
|
|
std::vector<Blob> inputs(1, inp), outputs;
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
|
|
|
|
Blob h_t_reference = blobFromNPY(_tf("lstm.prototxt.h_1.npy"));
|
|
|
|
normAssert(h_t_reference, outputs[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_RNN_Test_Accuracy_with_, CaffeRecurrent)
|
|
|
|
{
|
|
|
|
Ptr<RNNLayer> layer = RNNLayer::create();
|
|
|
|
|
|
|
|
layer->setWeights(
|
|
|
|
blobFromNPY(_tf("rnn.prototxt.w_0.npy")),
|
|
|
|
blobFromNPY(_tf("rnn.prototxt.w_1.npy")),
|
|
|
|
blobFromNPY(_tf("rnn.prototxt.w_2.npy")),
|
|
|
|
blobFromNPY(_tf("rnn.prototxt.w_3.npy")),
|
|
|
|
blobFromNPY(_tf("rnn.prototxt.w_4.npy")) );
|
|
|
|
|
|
|
|
std::vector<Blob> output, input(1, blobFromNPY(_tf("recurrent.input.npy")));
|
|
|
|
runLayer(layer, input, output);
|
|
|
|
|
|
|
|
Blob h_ref = blobFromNPY(_tf("rnn.prototxt.h_1.npy"));
|
|
|
|
normAssert(h_ref, output[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class Layer_RNN_Test : public ::testing::Test
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
int nX, nH, nO, nT, nS;
|
|
|
|
Blob Whh, Wxh, bh, Who, bo;
|
|
|
|
Ptr<RNNLayer> layer;
|
|
|
|
|
|
|
|
std::vector<Blob> inputs, outputs;
|
|
|
|
|
|
|
|
Layer_RNN_Test()
|
|
|
|
{
|
|
|
|
nT = 3;
|
|
|
|
nS = 5;
|
|
|
|
nX = 31;
|
|
|
|
nH = 64;
|
|
|
|
nO = 100;
|
|
|
|
|
|
|
|
Whh = Blob(BlobShape(nH, nH));
|
|
|
|
Wxh = Blob(BlobShape(nH, nX));
|
|
|
|
bh = Blob(BlobShape(nH, 1));
|
|
|
|
Who = Blob(BlobShape(nO, nH));
|
|
|
|
bo = Blob(BlobShape(nO, 1));
|
|
|
|
|
|
|
|
layer = RNNLayer::create();
|
|
|
|
layer->setProduceHiddenOutput(true);
|
|
|
|
layer->setWeights(Wxh, bh, Whh, Who, bo);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_F(Layer_RNN_Test, get_set_test)
|
|
|
|
{
|
|
|
|
inputs.push_back(Blob(BlobShape(nT, nS, 1, nX)));
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
|
|
|
|
EXPECT_EQ(outputs.size(), 2);
|
|
|
|
EXPECT_EQ(outputs[0].shape(), BlobShape(nT, nS, nO));
|
|
|
|
EXPECT_EQ(outputs[1].shape(), BlobShape(nT, nS, nH));
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|