|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "../precomp.hpp"
|
|
|
|
#include "layers_common.hpp"
|
|
|
|
#include "op_blas.hpp"
|
|
|
|
#include "op_halide.hpp"
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
namespace dnn
|
|
|
|
{
|
|
|
|
|
|
|
|
class FullyConnectedLayerImpl : public InnerProductLayer
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum { VEC_ALIGN = 8 };
|
|
|
|
|
|
|
|
FullyConnectedLayerImpl(const LayerParams& params)
|
|
|
|
{
|
|
|
|
setParamsFrom(params);
|
|
|
|
CV_Assert(1 <= blobs.size() && blobs.size() <= 2);
|
|
|
|
|
|
|
|
int numOutput = params.get<int>("num_output");
|
|
|
|
int innerSize = (int)blobs[0].total() / numOutput;
|
|
|
|
bias = params.get<bool>("bias_term", true);
|
|
|
|
axis = params.get<int>("axis", 1);
|
|
|
|
|
|
|
|
CV_Assert(blobs[0].dims >= 2 && (size_t)(innerSize * numOutput) == blobs[0].total());
|
|
|
|
CV_Assert(!bias || (blobs.size() == 2 && (size_t)numOutput == blobs[1].total()));
|
|
|
|
|
|
|
|
weightsMat = blobs[0] = blobs[0].reshape(1, numOutput);
|
|
|
|
int vecsize = weightsMat.cols;
|
|
|
|
if( vecsize % VEC_ALIGN != 0 )
|
|
|
|
{
|
|
|
|
int vecsize_aligned = (int)alignSize(vecsize, VEC_ALIGN);
|
|
|
|
Mat weightsBuf(weightsMat.rows, vecsize_aligned, weightsMat.type());
|
|
|
|
Mat wpadding = weightsBuf.colRange(vecsize, vecsize_aligned);
|
|
|
|
wpadding.setTo(Scalar::all(0.));
|
|
|
|
weightsMat = weightsBuf.colRange(0, vecsize);
|
|
|
|
blobs[0].copyTo(weightsMat);
|
|
|
|
blobs[0] = weightsMat;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bias)
|
|
|
|
biasMat = blobs[1] = blobs[1].reshape(1, 1);
|
|
|
|
else
|
|
|
|
biasMat = Mat::zeros(1, numOutput, weightsMat.type());
|
|
|
|
}
|
|
|
|
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
|
|
const int requiredOutputs,
|
|
|
|
std::vector<MatShape> &outputs,
|
|
|
|
std::vector<MatShape> &) const
|
|
|
|
{
|
|
|
|
CV_Assert(inputs.size() > 0);
|
|
|
|
CV_Assert(1 <= blobs.size() && blobs.size() <= 2);
|
|
|
|
CV_Assert(blobs[0].dims == 2);
|
|
|
|
|
|
|
|
int cAxis = clamp(axis, inputs[0]);
|
|
|
|
int outerSize = total(inputs[0], 0, cAxis);
|
|
|
|
int numOutput = blobs[0].size[0];
|
|
|
|
outputs.resize(inputs.size(), shape(outerSize, numOutput));
|
|
|
|
|
|
|
|
CV_Assert(!bias || (size_t)numOutput == blobs[1].total());
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual bool supportBackend(int backendId)
|
|
|
|
{
|
|
|
|
return backendId == DNN_BACKEND_DEFAULT ||
|
|
|
|
backendId == DNN_BACKEND_HALIDE && haveHalide() && axis == 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
class FullConnected : public ParallelLoopBody
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
FullConnected(const Mat& srcMat, const Mat& weights, const Mat& biasMat, Mat& dstMat, int nstripes)
|
|
|
|
{
|
|
|
|
CV_Assert( srcMat.dims == 2 && srcMat.cols == weights.cols &&
|
|
|
|
dstMat.rows == srcMat.rows && dstMat.cols == weights.rows &&
|
|
|
|
srcMat.type() == weights.type() && weights.type() == dstMat.type() &&
|
|
|
|
srcMat.type() == CV_32F &&
|
|
|
|
(biasMat.empty() || (biasMat.type() == srcMat.type() &&
|
|
|
|
biasMat.isContinuous() && (int)biasMat.total() == dstMat.cols)) );
|
|
|
|
|
|
|
|
srcMat_ = &srcMat;
|
|
|
|
weights_ = &weights;
|
|
|
|
biasMat_ = &biasMat;
|
|
|
|
dstMat_ = &dstMat;
|
|
|
|
nstripes_ = nstripes;
|
|
|
|
useAVX2_ = checkHardwareSupport(CPU_AVX2);
|
|
|
|
}
|
|
|
|
|
|
|
|
void operator()(const Range& r) const
|
|
|
|
{
|
|
|
|
int nsamples = srcMat_->rows;
|
|
|
|
int nw0 = weights_->rows;
|
|
|
|
int vecsize = srcMat_->cols;
|
|
|
|
int nstripes = nstripes_;
|
|
|
|
size_t total = (size_t)nsamples*nw0;
|
|
|
|
size_t stripeSize = (total + nstripes - 1)/nstripes;
|
|
|
|
size_t stripeStart = r.start*stripeSize;
|
|
|
|
size_t stripeEnd = r.end == nstripes ? total : std::min(r.end*stripeSize, total);
|
|
|
|
size_t wstep = weights_->step1();
|
|
|
|
|
|
|
|
for( size_t ofs = stripeStart; ofs < stripeEnd; )
|
|
|
|
{
|
|
|
|
int sampleIdx = (int)(ofs / nw0);
|
|
|
|
int delta = (int)(ofs - (size_t)sampleIdx*nw0);
|
|
|
|
const float* sptr = srcMat_->ptr<float>(sampleIdx);
|
|
|
|
const float* wptr = weights_->ptr<float>(delta);
|
|
|
|
float* dptr = dstMat_->ptr<float>(sampleIdx) + delta;
|
|
|
|
const float* biasptr = biasMat_->ptr<float>() + delta;
|
|
|
|
int nw = std::min(nw0 - delta, (int)(stripeEnd - ofs));
|
|
|
|
|
|
|
|
#if CV_DNN_TRY_AVX2
|
|
|
|
if( useAVX2_ )
|
|
|
|
fastGEMM1T_avx2( sptr, wptr, wstep, biasptr, dptr, nw, vecsize);
|
|
|
|
else
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
int i = 0, k;
|
|
|
|
|
|
|
|
#if CV_SIMD128
|
|
|
|
for( ; i <= nw - 4; i += 4, wptr += 4*wstep )
|
|
|
|
{
|
|
|
|
vfloat32x4 vs0 = v_setall_f32(0.f), vs1 = v_setall_f32(0.f);
|
|
|
|
vfloat32x4 vs2 = v_setall_f32(0.f), vs3 = v_setall_f32(0.f);
|
|
|
|
|
|
|
|
for( k = 0; k < vecsize; k += 4 )
|
|
|
|
{
|
|
|
|
vfloat32x4 v = v_load(sptr + k);
|
|
|
|
vs0 += v*v_load_aligned(wptr + k);
|
|
|
|
vs1 += v*v_load_aligned(wptr + wstep + k);
|
|
|
|
vs2 += v*v_load_aligned(wptr + wstep*2 + k);
|
|
|
|
vs3 += v*v_load_aligned(wptr + wstep*3 + k);
|
|
|
|
}
|
|
|
|
|
|
|
|
vfloat32x4 s = v_reduce_sum4(vs0, vs1, vs2, vs3);
|
|
|
|
s += v_load(biasptr + i);
|
|
|
|
v_store(dptr + i, s);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
for( ; i < nw; i++, wptr += wstep )
|
|
|
|
{
|
|
|
|
float s0=biasptr[i];
|
|
|
|
|
|
|
|
for( k = 0; k < vecsize; k++ )
|
|
|
|
{
|
|
|
|
float v = sptr[k];
|
|
|
|
s0 += v*wptr[k];
|
|
|
|
}
|
|
|
|
dptr[i] = s0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ofs += nw;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
const Mat *srcMat_, *weights_, *biasMat_;
|
|
|
|
Mat* dstMat_;
|
|
|
|
int nstripes_;
|
|
|
|
bool useAVX2_;
|
|
|
|
};
|
|
|
|
|
|
|
|
void forward(std::vector<Mat*> &input, std::vector<Mat> &output, std::vector<Mat> &)
|
|
|
|
{
|
|
|
|
int axisCan = clamp(axis, input[0]->dims);
|
|
|
|
int outerSize = input[0]->total(0, axisCan);
|
|
|
|
|
|
|
|
for (size_t i = 0; i < input.size(); i++)
|
|
|
|
{
|
|
|
|
Mat srcMat = input[i]->reshape(1, outerSize);
|
|
|
|
Mat dstMat = output[i].reshape(1, outerSize);
|
|
|
|
|
|
|
|
const int nstripes = getNumThreads();
|
|
|
|
FullConnected fconn(srcMat, weightsMat, biasMat, dstMat, nstripes);
|
|
|
|
parallel_for_(Range(0, nstripes), fconn, nstripes);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
|
|
|
|
{
|
|
|
|
#ifdef HAVE_HALIDE
|
|
|
|
int inW, inH, inC, inN, outC = blobs[0].size[0];
|
|
|
|
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
|
|
|
|
getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN);
|
|
|
|
auto weights = wrapToHalideBuffer(blobs[0], {inW, inH, inC, outC});
|
|
|
|
|
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n");
|
|
|
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
|
|
|
|
Halide::RDom r(0, inW, 0, inH, 0, inC);
|
|
|
|
Halide::Expr topExpr = sum(inputBuffer(r.x, r.y, r.z, n) *
|
|
|
|
weights(r.x, r.y, r.z, c));
|
|
|
|
if (bias)
|
|
|
|
{
|
|
|
|
Halide::Buffer<float> bias = wrapToHalideBuffer(blobs[1], {outC});
|
|
|
|
topExpr += bias(c);
|
|
|
|
}
|
|
|
|
top(x, y, c, n) = topExpr;
|
|
|
|
return Ptr<BackendNode>(new HalideBackendNode(top));
|
|
|
|
#endif // HAVE_HALIDE
|
|
|
|
return Ptr<BackendNode>();
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual void applyHalideScheduler(Ptr<BackendNode>& node,
|
|
|
|
const std::vector<Mat*> &inputs,
|
|
|
|
const std::vector<Mat> &outputs) const
|
|
|
|
{
|
|
|
|
#ifdef HAVE_HALIDE
|
|
|
|
int outW, outH, outC, outN;
|
|
|
|
getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN);
|
|
|
|
|
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n"), co("co"), ci("ci"), tile("tile");
|
|
|
|
Halide::Func& top = node.dynamicCast<HalideBackendNode>()->funcs.back();
|
|
|
|
|
|
|
|
if (outC + outN == 1)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (outC > 8)
|
|
|
|
top.split(c, co, ci, 8)
|
|
|
|
.fuse(x, y, tile).fuse(co, tile, tile).fuse(n, tile, tile)
|
|
|
|
.parallel(tile)
|
|
|
|
.vectorize(ci, 8);
|
|
|
|
else
|
|
|
|
top.fuse(x, y, tile).fuse(c, tile, tile).fuse(n, tile, tile)
|
|
|
|
.parallel(tile);
|
|
|
|
#endif // HAVE_HALIDE
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
|
|
|
const std::vector<MatShape> &outputs) const
|
|
|
|
{
|
|
|
|
(void)inputs; // suppress unused variable warning
|
|
|
|
long flops = 0;
|
|
|
|
|
|
|
|
int innerSize = blobs[0].size[1];
|
|
|
|
for(int i = 0; i < outputs.size(); i++)
|
|
|
|
{
|
|
|
|
flops += 3*innerSize*total(outputs[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
return flops;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
bool bias;
|
|
|
|
Mat weightsMat, biasMat;
|
|
|
|
};
|
|
|
|
|
|
|
|
Ptr<InnerProductLayer> InnerProductLayer::create(const LayerParams& params)
|
|
|
|
{
|
|
|
|
return Ptr<InnerProductLayer>(new FullyConnectedLayerImpl(params));
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|