You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
124 lines
4.4 KiB
124 lines
4.4 KiB
10 years ago
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2015, University of Ostrava, Institute for Research and Applications of Fuzzy Modeling,
|
||
|
// Pavel Vlasanek, all rights reserved. Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "test_precomp.hpp"
|
||
|
#include <string>
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace cv;
|
||
|
|
||
|
class CV_FuzzyImageTest : public cvtest::BaseTest
|
||
|
{
|
||
|
public:
|
||
|
CV_FuzzyImageTest();
|
||
|
~CV_FuzzyImageTest();
|
||
|
protected:
|
||
|
void run(int);
|
||
|
};
|
||
|
|
||
|
CV_FuzzyImageTest::CV_FuzzyImageTest()
|
||
|
{
|
||
|
}
|
||
|
CV_FuzzyImageTest::~CV_FuzzyImageTest() {}
|
||
|
|
||
|
void CV_FuzzyImageTest::run( int )
|
||
|
{
|
||
|
string folder = string(ts->get_data_path()) + "fuzzy/";
|
||
|
Mat orig = imread(folder + "orig.png");
|
||
|
Mat exp1 = imread(folder + "exp1.png");
|
||
|
Mat exp2 = imread(folder + "exp2.png");
|
||
|
Mat exp3 = imread(folder + "exp3.png");
|
||
|
Mat mask1 = imread(folder + "mask1.png");
|
||
|
Mat mask2 = imread(folder + "mask2.png");
|
||
|
|
||
|
if (orig.empty() || exp1.empty() || exp2.empty() || mask1.empty() || mask2.empty())
|
||
|
{
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Conversion because of comparison.
|
||
|
|
||
|
orig.convertTo(orig, CV_32F);
|
||
|
exp1.convertTo(exp1, CV_32F);
|
||
|
exp2.convertTo(exp2, CV_32F);
|
||
|
exp3.convertTo(exp3, CV_32F);
|
||
|
|
||
|
Mat res1, res2,res3;
|
||
|
ft::inpaint(orig, mask1, res1, 2, ft::LINEAR, ft::ONE_STEP);
|
||
|
ft::inpaint(orig, mask2, res2, 2, ft::LINEAR, ft::MULTI_STEP);
|
||
|
ft::inpaint(orig, mask2, res3, 2, ft::LINEAR, ft::ITERATIVE);
|
||
|
|
||
|
Mat diff1, diff2, diff3;
|
||
|
absdiff(orig, res1, diff1);
|
||
|
absdiff(orig, res2, diff2);
|
||
|
absdiff(orig, res3, diff3);
|
||
|
|
||
|
double n1 = cvtest::norm(diff1.reshape(1), NORM_INF, mask1.reshape(1));
|
||
|
double n2 = cvtest::norm(diff2.reshape(1), NORM_INF, mask2.reshape(1));
|
||
|
double n3 = cvtest::norm(diff3.reshape(1), NORM_INF, mask2.reshape(1));
|
||
|
|
||
|
if (n1 != 0 || n2 != 0 || n3 != 0)
|
||
|
{
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH );
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
absdiff(exp1, res1, diff1);
|
||
|
absdiff(exp2, res2, diff2);
|
||
|
absdiff(exp3, res3, diff3);
|
||
|
|
||
|
n1 = cvtest::norm(diff1.reshape(1), NORM_INF, mask1.reshape(1));
|
||
|
n2 = cvtest::norm(diff2.reshape(1), NORM_INF, mask2.reshape(1));
|
||
|
n3 = cvtest::norm(diff3.reshape(1), NORM_INF, mask2.reshape(1));
|
||
|
|
||
|
const int jpeg_thres = 3;
|
||
|
if (n1 > jpeg_thres || n2 > jpeg_thres || n3 > jpeg_thres)
|
||
|
{
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
ts->set_failed_test_info(cvtest::TS::OK);
|
||
|
}
|
||
|
|
||
|
TEST(Fuzzy_image, regression) { CV_FuzzyImageTest test; test.safe_run(); }
|