You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
67 lines
2.4 KiB
67 lines
2.4 KiB
10 years ago
|
/*
|
||
|
* textdetection.cpp
|
||
|
*
|
||
|
* A demo program of End-to-end Scene Text Detection and Recognition:
|
||
|
* Shows the use of the Tesseract OCR API with the Extremal Region Filter algorithm described in:
|
||
|
* Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012
|
||
|
*
|
||
|
* Created on: Jul 31, 2014
|
||
|
* Author: Lluis Gomez i Bigorda <lgomez AT cvc.uab.es>
|
||
|
*/
|
||
|
|
||
|
#include "opencv2/text.hpp"
|
||
|
#include "opencv2/core/utility.hpp"
|
||
|
#include "opencv2/highgui.hpp"
|
||
|
#include "opencv2/imgproc.hpp"
|
||
|
|
||
|
#include <iostream>
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace cv;
|
||
|
using namespace cv::text;
|
||
|
|
||
|
//Perform text recognition in a given cropped word
|
||
|
int main(int argc, char* argv[])
|
||
|
{
|
||
|
cout << endl << argv[0] << endl << endl;
|
||
|
cout << "A demo program of Scene Text cropped word Recognition: " << endl;
|
||
|
cout << "Shows the use of the OCRBeamSearchDecoder class using the Single Layer CNN character classifier described in:" << endl;
|
||
|
cout << "Coates, Adam, et al. \"Text detection and character recognition in scene images with unsupervised feature learning.\" ICDAR 2011." << endl << endl;
|
||
|
|
||
|
Mat image;
|
||
|
if(argc>1)
|
||
|
image = imread(argv[1]);
|
||
|
else
|
||
|
{
|
||
|
cout << " Usage: " << argv[0] << " <input_image>" << endl << endl;
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
Mat transition_p;
|
||
|
string filename = "OCRHMM_transitions_table.xml"; // TODO this table was done with a different vocabulary order?
|
||
|
// TODO add a new function in ocr.cpp to create transition tab
|
||
|
// for a given lexicon
|
||
|
FileStorage fs(filename, FileStorage::READ);
|
||
|
fs["transition_probabilities"] >> transition_p;
|
||
|
fs.release();
|
||
|
Mat emission_p = Mat::eye(62,62,CV_64FC1);
|
||
|
string voc = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyx0123456789";
|
||
|
|
||
|
Ptr<OCRBeamSearchDecoder> ocr = OCRBeamSearchDecoder::create(
|
||
|
loadOCRBeamSearchClassifierCNN("OCRBeamSearch_CNN_model_data.xml.gz"),
|
||
|
voc, transition_p, emission_p);
|
||
|
|
||
|
double t_r = (double)getTickCount();
|
||
|
string output;
|
||
|
|
||
|
vector<Rect> boxes;
|
||
|
vector<string> words;
|
||
|
vector<float> confidences;
|
||
|
ocr->run(image, output, &boxes, &words, &confidences, OCR_LEVEL_WORD);
|
||
|
|
||
|
cout << "OCR output = \"" << output << "\". Decoded in "
|
||
|
<< ((double)getTickCount() - t_r)*1000/getTickFrequency() << " ms." << endl << endl;
|
||
|
|
||
|
return 0;
|
||
|
}
|