Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

224 lines
6.5 KiB

11 years ago
/*
By downloading, copying, installing or using the software you agree to this
license. If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Copyright (C) 2013, OpenCV Foundation, all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall copyright holders or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/
#ifndef __OPENCV_XOBJDETECT_XOBJDETECT_HPP__
#define __OPENCV_XOBJDETECT_XOBJDETECT_HPP__
11 years ago
#include <opencv2/core.hpp>
#include <vector>
#include <string>
namespace cv
{
namespace xobjdetect
11 years ago
{
/* Compute channel pyramid for acf features
image image, for which channels should be computed
channels output array for computed channels
*/
11 years ago
void computeChannels(InputArray image, std::vector<Mat>& channels);
11 years ago
class CV_EXPORTS ACFFeatureEvaluator : public Algorithm
11 years ago
{
public:
/* Set channels for feature evaluation */
virtual void setChannels(InputArrayOfArrays channels) = 0;
11 years ago
/* Set window position */
virtual void setPosition(Size position) = 0;
11 years ago
11 years ago
virtual void assertChannels() = 0;
11 years ago
/* Evaluate feature with given index for current channels
and window position */
virtual int evaluate(size_t feature_ind) const = 0;
11 years ago
/* Evaluate all features for current channels and window position
Returns matrix-column of features
*/
virtual void evaluateAll(OutputArray feature_values) const = 0;
11 years ago
};
/* Construct evaluator, set features to evaluate */
CV_EXPORTS Ptr<ACFFeatureEvaluator>
createACFFeatureEvaluator(const std::vector<Point3i>& features);
11 years ago
/* Generate acf features
window_size size of window in which features should be evaluated
count number of features to generate.
Max number of features is min(count, # possible distinct features)
Returns vector of distinct acf features
*/
std::vector<Point3i>
generateFeatures(Size window_size, int count = INT_MAX);
struct CV_EXPORTS WaldBoostParams
{
int weak_count;
float alpha;
11 years ago
WaldBoostParams(): weak_count(100), alpha(0.02f)
{}
11 years ago
};
class CV_EXPORTS WaldBoost : public Algorithm
11 years ago
{
public:
/* Train WaldBoost cascade for given data
data matrix of feature values, size M x N, one feature per row
labels matrix of sample class labels, size 1 x N. Labels can be from
{-1, +1}
Returns feature indices chosen for cascade.
Feature enumeration starts from 0
*/
11 years ago
virtual std::vector<int> train(const Mat& /*data*/,
const Mat& /*labels*/) {return std::vector<int>();}
11 years ago
/* Predict object class given object that can compute object features
feature_evaluator object that can compute features by demand
Returns confidence_value measure of confidense that object
is from class +1
*/
virtual float predict(
11 years ago
const Ptr<ACFFeatureEvaluator>& /*feature_evaluator*/) const
{return 0.0f;}
/* Write WaldBoost to FileStorage */
virtual void write(FileStorage& /*fs*/) const {}
11 years ago
/* Read WaldBoost */
virtual void read(const FileNode& /*node*/) {}
11 years ago
};
11 years ago
void write(FileStorage& fs, String&, const WaldBoost& waldboost);
void read(const FileNode& node, WaldBoost& w,
const WaldBoost& default_value = WaldBoost());
CV_EXPORTS Ptr<WaldBoost>
createWaldBoost(const WaldBoostParams& params = WaldBoostParams());
11 years ago
struct CV_EXPORTS ICFDetectorParams
{
int feature_count;
int weak_count;
int model_n_rows;
int model_n_cols;
int bg_per_image;
ICFDetectorParams(): feature_count(UINT_MAX), weak_count(100),
model_n_rows(56), model_n_cols(56), bg_per_image(5)
{}
11 years ago
};
class CV_EXPORTS ICFDetector
{
public:
11 years ago
ICFDetector(): waldboost_(), features_() {}
11 years ago
/* Train detector
11 years ago
pos_path path to folder with images of objects
11 years ago
11 years ago
bg_path path to folder with background images
11 years ago
params parameters for detector training
*/
11 years ago
void train(const String& pos_path,
const String& bg_path,
11 years ago
ICFDetectorParams params = ICFDetectorParams());
11 years ago
/* Detect object on image
image image for detection
object output array of bounding boxes
scaleFactor scale between layers in detection pyramid
minSize min size of objects in pixels
maxSize max size of objects in pixels
*/
void detect(const Mat& image, std::vector<Rect>& objects,
double scaleFactor, Size minSize, Size maxSize, float threshold);
/* Write detector to FileStorage */
void write(FileStorage &fs) const;
/* Read detector */
void read(const FileNode &node);
private:
Ptr<WaldBoost> waldboost_;
std::vector<Point3i> features_;
int model_n_rows_;
int model_n_cols_;
11 years ago
};
11 years ago
CV_EXPORTS void write(FileStorage& fs, String&, const ICFDetector& detector);
CV_EXPORTS void read(const FileNode& node, ICFDetector& d,
const ICFDetector& default_value = ICFDetector());
} /* namespace xobjdetect */
11 years ago
} /* namespace cv */
#endif /* __OPENCV_XOBJDETECT_XOBJDETECT_HPP__ */