Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

94 lines
3.5 KiB

from itertools import chain
import math
import cv2 as cv
import numpy as np
from .feature_matcher import FeatureMatcher
from .stitching_error import StitchingError
class Subsetter:
DEFAULT_CONFIDENCE_THRESHOLD = 1
DEFAULT_MATCHES_GRAPH_DOT_FILE = None
def __init__(self,
confidence_threshold=DEFAULT_CONFIDENCE_THRESHOLD,
matches_graph_dot_file=DEFAULT_MATCHES_GRAPH_DOT_FILE):
self.confidence_threshold = confidence_threshold
self.save_file = matches_graph_dot_file
def subset(self, img_names, img_sizes, imgs, features, matches):
self.save_matches_graph_dot_file(img_names, matches)
indices = self.get_indices_to_keep(features, matches)
img_names = Subsetter.subset_list(img_names, indices)
img_sizes = Subsetter.subset_list(img_sizes, indices)
imgs = Subsetter.subset_list(imgs, indices)
features = Subsetter.subset_list(features, indices)
matches = Subsetter.subset_matches(matches, indices)
return img_names, img_sizes, imgs, features, matches
def save_matches_graph_dot_file(self, img_names, pairwise_matches):
if self.save_file:
with open(self.save_file, 'w') as filehandler:
filehandler.write(self.get_matches_graph(img_names,
pairwise_matches)
)
def get_matches_graph(self, img_names, pairwise_matches):
return cv.detail.matchesGraphAsString(img_names, pairwise_matches,
self.confidence_threshold)
def get_indices_to_keep(self, features, pairwise_matches):
indices = cv.detail.leaveBiggestComponent(features,
pairwise_matches,
self.confidence_threshold)
if len(indices) < 2:
raise StitchingError("No match exceeds the "
"given confidence theshold.")
return indices
@staticmethod
def subset_list(list_to_subset, indices):
return [list_to_subset[i] for i in indices]
@staticmethod
def subset_matches(pairwise_matches, indices):
indices_to_delete = Subsetter.get_indices_to_delete(
math.sqrt(len(pairwise_matches)),
indices
)
matches_matrix = FeatureMatcher.get_matches_matrix(pairwise_matches)
matches_matrix_subset = Subsetter.subset_matrix(matches_matrix,
indices_to_delete)
matches_subset = Subsetter.matrix_rows_to_list(matches_matrix_subset)
return matches_subset
@staticmethod
def get_indices_to_delete(nr_elements, indices_to_keep):
return list(set(range(int(nr_elements))) - set(indices_to_keep))
@staticmethod
def subset_matrix(matrix_to_subset, indices_to_delete):
for idx, idx_to_delete in enumerate(indices_to_delete):
matrix_to_subset = Subsetter.delete_index_from_matrix(
matrix_to_subset,
idx_to_delete-idx # matrix shape reduced by one at each step
)
return matrix_to_subset
@staticmethod
def delete_index_from_matrix(matrix, idx):
mask = np.ones(matrix.shape[0], bool)
mask[idx] = 0
return matrix[mask, :][:, mask]
@staticmethod
def matrix_rows_to_list(matrix):
return list(chain.from_iterable(matrix.tolist()))