Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

291 lines
7.6 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#define VARNAME(A) #A
using namespace std;
using namespace cv;
using namespace cv::gpu;
using namespace cvtest;
//std::string generateVarList(int first,...)
//{
// vector<std::string> varname;
//
// va_list argp;
// string s;
// stringstream ss;
// va_start(argp,first);
// int i=first;
// while(i!=-1)
// {
// ss<<i<<",";
// i=va_arg(argp,int);
// };
// s=ss.str();
// va_end(argp);
// return s;
//};
//std::string generateVarList(int& p1,int& p2)
//{
// stringstream ss;
// ss<<VARNAME(p1)<<":"<<src1x<<","<<VARNAME(p2)<<":"<<src1y;
// return ss.str();
//};
int randomInt(int minVal, int maxVal)
{
RNG &rng = TS::ptr()->get_rng();
return rng.uniform(minVal, maxVal);
}
double randomDouble(double minVal, double maxVal)
{
RNG &rng = TS::ptr()->get_rng();
return rng.uniform(minVal, maxVal);
}
Size randomSize(int minVal, int maxVal)
{
return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal));
}
Scalar randomScalar(double minVal, double maxVal)
{
return Scalar(randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal));
}
Mat randomMat(Size size, int type, double minVal, double maxVal)
{
return randomMat(TS::ptr()->get_rng(), size, type, minVal, maxVal, false);
}
cv::ocl::oclMat createMat_ocl(Size size, int type, bool useRoi)
{
Size size0 = size;
if (useRoi)
{
size0.width += randomInt(5, 15);
size0.height += randomInt(5, 15);
}
cv::ocl::oclMat d_m(size0, type);
if (size0 != size)
d_m = d_m(Rect((size0.width - size.width) / 2, (size0.height - size.height) / 2, size.width, size.height));
return d_m;
}
cv::ocl::oclMat loadMat_ocl(const Mat& m, bool useRoi)
{
CV_Assert(m.type() == CV_8UC1 || m.type() == CV_8UC3);
cv::ocl::oclMat d_m;
d_m = createMat_ocl(m.size(), m.type(), useRoi);
Size ls;
Point pt;
d_m.locateROI(ls, pt);
Rect roi(pt.x, pt.y, d_m.size().width, d_m.size().height);
cv::ocl::oclMat m_ocl(m);
cv::ocl::oclMat d_m_roi(d_m, roi);
m_ocl.copyTo(d_m);
return d_m;
}
/*
void showDiff(InputArray gold_, InputArray actual_, double eps)
{
Mat gold;
if (gold_.kind() == _InputArray::MAT)
gold = gold_.getMat();
else
gold_.getGpuMat().download(gold);
Mat actual;
if (actual_.kind() == _InputArray::MAT)
actual = actual_.getMat();
else
actual_.getGpuMat().download(actual);
Mat diff;
absdiff(gold, actual, diff);
threshold(diff, diff, eps, 255.0, cv::THRESH_BINARY);
namedWindow("gold", WINDOW_NORMAL);
namedWindow("actual", WINDOW_NORMAL);
namedWindow("diff", WINDOW_NORMAL);
imshow("gold", gold);
imshow("actual", actual);
imshow("diff", diff);
waitKey();
}
*/
vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end)
{
vector<MatType> v;
v.reserve((depth_end - depth_start + 1) * (cn_end - cn_start + 1));
for (int depth = depth_start; depth <= depth_end; ++depth)
{
for (int cn = cn_start; cn <= cn_end; ++cn)
{
v.push_back(CV_MAKETYPE(depth, cn));
}
}
return v;
}
const vector<MatType> &all_types()
{
static vector<MatType> v = types(CV_8U, CV_64F, 1, 4);
return v;
}
Mat readImage(const string &fileName, int flags)
{
return imread(string(cvtest::TS::ptr()->get_data_path()) + fileName, flags);
}
Mat readImageType(const string &fname, int type)
{
Mat src = readImage(fname, CV_MAT_CN(type) == 1 ? IMREAD_GRAYSCALE : IMREAD_COLOR);
if (CV_MAT_CN(type) == 4)
{
Mat temp;
cvtColor(src, temp, cv::COLOR_BGR2BGRA);
swap(src, temp);
}
src.convertTo(src, CV_MAT_DEPTH(type));
return src;
}
double checkNorm(const Mat &m)
{
return norm(m, NORM_INF);
}
double checkNorm(const Mat &m1, const Mat &m2)
{
return norm(m1, m2, NORM_INF);
}
double checkSimilarity(const Mat &m1, const Mat &m2)
{
Mat diff;
matchTemplate(m1, m2, diff, CV_TM_CCORR_NORMED);
return std::abs(diff.at<float>(0, 0) - 1.f);
}
/*
void cv::ocl::PrintTo(const DeviceInfo& info, ostream* os)
{
(*os) << info.name();
}
*/
void PrintTo(const Inverse &inverse, std::ostream *os)
{
if (inverse)
(*os) << "inverse";
else
(*os) << "direct";
}
double checkRectSimilarity(Size sz, std::vector<Rect>& ob1, std::vector<Rect>& ob2)
{
double final_test_result = 0.0;
size_t sz1 = ob1.size();
size_t sz2 = ob2.size();
if(sz1 != sz2)
{
return sz1 > sz2 ? (double)(sz1 - sz2) : (double)(sz2 - sz1);
}
else
{
if(sz1==0 && sz2==0)
return 0;
cv::Mat cpu_result(sz, CV_8UC1);
cpu_result.setTo(0);
for(vector<Rect>::const_iterator r = ob1.begin(); r != ob1.end(); r++)
{
cv::Mat cpu_result_roi(cpu_result, *r);
cpu_result_roi.setTo(1);
cpu_result.copyTo(cpu_result);
}
int cpu_area = cv::countNonZero(cpu_result > 0);
cv::Mat gpu_result(sz, CV_8UC1);
gpu_result.setTo(0);
for(vector<Rect>::const_iterator r2 = ob2.begin(); r2 != ob2.end(); r2++)
{
cv::Mat gpu_result_roi(gpu_result, *r2);
gpu_result_roi.setTo(1);
gpu_result.copyTo(gpu_result);
}
cv::Mat result_;
multiply(cpu_result, gpu_result, result_);
int result = cv::countNonZero(result_ > 0);
if(cpu_area!=0 && result!=0)
final_test_result = 1.0 - (double)result/(double)cpu_area;
else if(cpu_area==0 && result!=0)
final_test_result = -1;
}
return final_test_result;
}