mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
173 lines
7.0 KiB
173 lines
7.0 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
#include <vector> |
|
#include <string> |
|
#include <opencv2/calib3d.hpp> |
|
#include <opencv2/imgcodecs.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <iostream> |
|
#include <fstream> |
|
|
|
// ! [detectPointsAndCalibrate_signature] |
|
static void detectPointsAndCalibrate (cv::Size pattern_size, float pattern_scale, const std::string &pattern_type, |
|
const std::vector<bool> &is_fisheye, const std::vector<std::string> &filenames) |
|
// ! [detectPointsAndCalibrate_signature] |
|
{ |
|
// ! [calib_init] |
|
std::vector<cv::Point3f> board (pattern_size.area()); |
|
const int num_cameras = (int)is_fisheye.size(); |
|
std::vector<std::vector<cv::Mat>> image_points_all; |
|
std::vector<cv::Size> image_sizes; |
|
std::vector<cv::Mat> Ks, distortions, Ts, Rs; |
|
cv::Mat rvecs0, tvecs0, errors_mat, output_pairs; |
|
if (pattern_type == "checkerboard") { |
|
for (int i = 0; i < pattern_size.height; i++) { |
|
for (int j = 0; j < pattern_size.width; j++) { |
|
board[i*pattern_size.width+j] = cv::Point3f((float)j, (float)i, 0.f) * pattern_scale; |
|
} |
|
} |
|
} else if (pattern_type == "circles") { |
|
for (int i = 0; i < pattern_size.height; i++) { |
|
for (int j = 0; j < pattern_size.width; j++) { |
|
board[i*pattern_size.width+j] = cv::Point3f((float)j, (float)i, 0.f) * pattern_scale; |
|
} |
|
} |
|
} else if (pattern_type == "acircles") { |
|
for (int i = 0; i < pattern_size.height; i++) { |
|
for (int j = 0; j < pattern_size.width; j++) { |
|
if (i % 2 == 1) { |
|
board[i*pattern_size.width+j] = cv::Point3f((j + .5f)*pattern_scale, (i/2 + .5f) * pattern_scale, 0.f); |
|
} else{ |
|
board[i*pattern_size.width+j] = cv::Point3f(j*pattern_scale, (i/2)*pattern_scale, 0); |
|
} |
|
} |
|
} |
|
} |
|
else { |
|
CV_Error(cv::Error::StsNotImplemented, "pattern_type is not implemented!"); |
|
} |
|
// ! [calib_init] |
|
// ! [detect_pattern] |
|
int num_frames = -1; |
|
for (const auto &filename : filenames) { |
|
std::fstream file(filename); |
|
CV_Assert(file.is_open()); |
|
std::string img_file; |
|
std::vector<cv::Mat> image_points_cameras; |
|
bool save_img_size = true; |
|
while (std::getline(file, img_file)) { |
|
if (img_file.empty()) |
|
break; |
|
std::cout << img_file << "\n"; |
|
cv::Mat img = cv::imread(img_file), corners; |
|
if (save_img_size) { |
|
image_sizes.emplace_back(cv::Size(img.cols, img.rows)); |
|
save_img_size = false; |
|
} |
|
|
|
bool success = false; |
|
if (pattern_type == "checkerboard") { |
|
cv::cvtColor(img, img, cv::COLOR_BGR2GRAY); |
|
success = cv::findChessboardCorners(img, pattern_size, corners); |
|
} |
|
else if (pattern_type == "circles") |
|
{ |
|
success = cv::findCirclesGrid(img, pattern_size, corners, cv::CALIB_CB_SYMMETRIC_GRID); |
|
} |
|
else if (pattern_type == "acircles") |
|
{ |
|
success = cv::findCirclesGrid(img, pattern_size, corners, cv::CALIB_CB_ASYMMETRIC_GRID); |
|
} |
|
|
|
cv::Mat corners2; |
|
corners.convertTo(corners2, CV_32FC2); |
|
|
|
if (success && corners.rows == pattern_size.area()) |
|
image_points_cameras.emplace_back(corners2); |
|
else |
|
image_points_cameras.emplace_back(cv::Mat()); |
|
} |
|
if (num_frames == -1) |
|
num_frames = (int)image_points_cameras.size(); |
|
else |
|
CV_Assert(num_frames == (int)image_points_cameras.size()); |
|
image_points_all.emplace_back(image_points_cameras); |
|
} |
|
// ! [detect_pattern] |
|
// ! [detection_matrix] |
|
cv::Mat visibility(num_cameras, num_frames, CV_8UC1); |
|
for (int i = 0; i < num_cameras; i++) { |
|
for (int j = 0; j < num_frames; j++) { |
|
visibility.at<unsigned char>(i,j) = image_points_all[i][j].empty() ? 0 : 1; |
|
} |
|
} |
|
// ! [detection_matrix] |
|
CV_Assert(num_frames != -1); |
|
|
|
std::vector<std::vector<cv::Point3f>> objPoints(num_frames, board); |
|
|
|
// ! [multiview_calib] |
|
const double rmse = calibrateMultiview(objPoints, image_points_all, image_sizes, visibility, |
|
Rs, Ts, Ks, distortions, cv::noArray(), cv::noArray(), |
|
is_fisheye, errors_mat, output_pairs); |
|
// ! [multiview_calib] |
|
std::cout << "average RMSE over detection mask " << rmse << "\n"; |
|
for (int c = 0; c < (int)Rs.size(); c++) { |
|
std::cout << "camera " << c << '\n'; |
|
std::cout << Rs[c] << " rotation\n"; |
|
std::cout << Ts[c] << " translation\n"; |
|
std::cout << Ks[c] << " intrinsic matrix\n"; |
|
std::cout << distortions[c] << " distortion\n"; |
|
} |
|
} |
|
|
|
int main (int argc, char **argv) { |
|
cv::String keys = |
|
"{help h usage ? || print help }" |
|
"{pattern_width || pattern grid width}" |
|
"{pattern_height || pattern grid height}" |
|
"{pattern_scale || pattern scale}" |
|
"{pattern_type | checkerboard | pattern type, e.g., checkerboard or acircles}" |
|
"{is_fisheye || cameras type fisheye (1), pinhole(0), separated by comma (no space)}" |
|
"{files_with_images || files containing path to image names separated by comma (no space)}"; |
|
|
|
cv::CommandLineParser parser(argc, argv, keys); |
|
if (parser.has("help")) { |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
CV_Assert(parser.has("pattern_width") && parser.has("pattern_height") && parser.has("pattern_type") && |
|
parser.has("is_fisheye") && parser.has("files_with_images")); |
|
CV_Assert(parser.get<cv::String>("pattern_type") == "checkerboard" || |
|
parser.get<cv::String>("pattern_type") == "circles" || |
|
parser.get<cv::String>("pattern_type") == "acircles"); |
|
|
|
const cv::Size pattern_size (parser.get<int>("pattern_width"), parser.get<int>("pattern_height")); |
|
std::vector<bool> is_fisheye; |
|
const cv::String is_fisheye_str = parser.get<cv::String>("is_fisheye"); |
|
for (char i : is_fisheye_str) { |
|
if (i == '0') { |
|
is_fisheye.push_back(false); |
|
} else if (i == '1') { |
|
is_fisheye.push_back(true); |
|
} |
|
} |
|
const cv::String files_with_images_str = parser.get<cv::String>("files_with_images"); |
|
std::vector<std::string> filenames; |
|
std::string temp_str; |
|
for (char i : files_with_images_str) { |
|
if (i == ',') { |
|
filenames.emplace_back(temp_str); |
|
temp_str = ""; |
|
} else { |
|
temp_str += i; |
|
} |
|
} |
|
filenames.emplace_back(temp_str); |
|
CV_CheckEQ(filenames.size(), is_fisheye.size(), "filenames size must be equal to number of cameras!"); |
|
detectPointsAndCalibrate (pattern_size, parser.get<float>("pattern_scale"), parser.get<cv::String>("pattern_type"), is_fisheye, filenames); |
|
return 0; |
|
}
|
|
|