mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
625 lines
27 KiB
625 lines
27 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef OPENCV_FLANN_HPP |
|
#define OPENCV_FLANN_HPP |
|
|
|
#include "opencv2/core.hpp" |
|
#include "opencv2/flann/miniflann.hpp" |
|
#include "opencv2/flann/flann_base.hpp" |
|
|
|
/** |
|
@defgroup flann Clustering and Search in Multi-Dimensional Spaces |
|
|
|
This section documents OpenCV's interface to the FLANN library. FLANN (Fast Library for Approximate |
|
Nearest Neighbors) is a library that contains a collection of algorithms optimized for fast nearest |
|
neighbor search in large datasets and for high dimensional features. More information about FLANN |
|
can be found in @cite Muja2009 . |
|
*/ |
|
|
|
namespace cvflann |
|
{ |
|
CV_EXPORTS flann_distance_t flann_distance_type(); |
|
CV_DEPRECATED CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order); |
|
} |
|
|
|
|
|
namespace cv |
|
{ |
|
namespace flann |
|
{ |
|
|
|
|
|
//! @addtogroup flann |
|
//! @{ |
|
|
|
template <typename T> struct CvType {}; |
|
template <> struct CvType<unsigned char> { static int type() { return CV_8U; } }; |
|
template <> struct CvType<char> { static int type() { return CV_8S; } }; |
|
template <> struct CvType<unsigned short> { static int type() { return CV_16U; } }; |
|
template <> struct CvType<short> { static int type() { return CV_16S; } }; |
|
template <> struct CvType<int> { static int type() { return CV_32S; } }; |
|
template <> struct CvType<float> { static int type() { return CV_32F; } }; |
|
template <> struct CvType<double> { static int type() { return CV_64F; } }; |
|
|
|
|
|
// bring the flann parameters into this namespace |
|
using ::cvflann::get_param; |
|
using ::cvflann::print_params; |
|
|
|
// bring the flann distances into this namespace |
|
using ::cvflann::L2_Simple; |
|
using ::cvflann::L2; |
|
using ::cvflann::L1; |
|
using ::cvflann::MinkowskiDistance; |
|
using ::cvflann::MaxDistance; |
|
using ::cvflann::HammingLUT; |
|
using ::cvflann::Hamming; |
|
using ::cvflann::Hamming2; |
|
using ::cvflann::HistIntersectionDistance; |
|
using ::cvflann::HellingerDistance; |
|
using ::cvflann::ChiSquareDistance; |
|
using ::cvflann::KL_Divergence; |
|
|
|
|
|
/** @brief The FLANN nearest neighbor index class. This class is templated with the type of elements for which |
|
the index is built. |
|
|
|
`Distance` functor specifies the metric to be used to calculate the distance between two points. |
|
There are several `Distance` functors that are readily available: |
|
|
|
cv::cvflann::L2_Simple - Squared Euclidean distance functor. |
|
This is the simpler, unrolled version. This is preferable for very low dimensionality data (eg 3D points) |
|
|
|
cv::flann::L2 - Squared Euclidean distance functor, optimized version. |
|
|
|
cv::flann::L1 - Manhattan distance functor, optimized version. |
|
|
|
cv::flann::MinkowskiDistance - The Minkowsky distance functor. |
|
This is highly optimised with loop unrolling. |
|
The computation of squared root at the end is omitted for efficiency. |
|
|
|
cv::flann::MaxDistance - The max distance functor. It computes the |
|
maximum distance between two vectors. This distance is not a valid kdtree distance, it's not |
|
dimensionwise additive. |
|
|
|
cv::flann::HammingLUT - %Hamming distance functor. It counts the bit |
|
differences between two strings using a lookup table implementation. |
|
|
|
cv::flann::Hamming - %Hamming distance functor. Population count is |
|
performed using library calls, if available. Lookup table implementation is used as a fallback. |
|
|
|
cv::flann::Hamming2 - %Hamming distance functor. Population count is |
|
implemented in 12 arithmetic operations (one of which is multiplication). |
|
|
|
cv::flann::HistIntersectionDistance - The histogram |
|
intersection distance functor. |
|
|
|
cv::flann::HellingerDistance - The Hellinger distance functor. |
|
|
|
cv::flann::ChiSquareDistance - The chi-square distance functor. |
|
|
|
cv::flann::KL_Divergence - The Kullback-Leibler divergence functor. |
|
|
|
Although the provided implementations cover a vast range of cases, it is also possible to use |
|
a custom implementation. The distance functor is a class whose `operator()` computes the distance |
|
between two features. If the distance is also a kd-tree compatible distance, it should also provide an |
|
`accum_dist()` method that computes the distance between individual feature dimensions. |
|
|
|
In addition to `operator()` and `accum_dist()`, a distance functor should also define the |
|
`ElementType` and the `ResultType` as the types of the elements it operates on and the type of the |
|
result it computes. If a distance functor can be used as a kd-tree distance (meaning that the full |
|
distance between a pair of features can be accumulated from the partial distances between the |
|
individual dimensions) a typedef `is_kdtree_distance` should be present inside the distance functor. |
|
If the distance is not a kd-tree distance, but it's a distance in a vector space (the individual |
|
dimensions of the elements it operates on can be accessed independently) a typedef |
|
`is_vector_space_distance` should be defined inside the functor. If neither typedef is defined, the |
|
distance is assumed to be a metric distance and will only be used with indexes operating on |
|
generic metric distances. |
|
*/ |
|
template <typename Distance> |
|
class GenericIndex |
|
{ |
|
public: |
|
typedef typename Distance::ElementType ElementType; |
|
typedef typename Distance::ResultType DistanceType; |
|
|
|
/** @brief Constructs a nearest neighbor search index for a given dataset. |
|
|
|
@param features Matrix of containing the features(points) to index. The size of the matrix is |
|
num_features x feature_dimensionality and the data type of the elements in the matrix must |
|
coincide with the type of the index. |
|
@param params Structure containing the index parameters. The type of index that will be |
|
constructed depends on the type of this parameter. See the description. |
|
@param distance |
|
|
|
The method constructs a fast search structure from a set of features using the specified algorithm |
|
with specified parameters, as defined by params. params is a reference to one of the following class |
|
IndexParams descendants: |
|
|
|
- **LinearIndexParams** When passing an object of this type, the index will perform a linear, |
|
brute-force search. : |
|
@code |
|
struct LinearIndexParams : public IndexParams |
|
{ |
|
}; |
|
@endcode |
|
- **KDTreeIndexParams** When passing an object of this type the index constructed will consist of |
|
a set of randomized kd-trees which will be searched in parallel. : |
|
@code |
|
struct KDTreeIndexParams : public IndexParams |
|
{ |
|
KDTreeIndexParams( int trees = 4 ); |
|
}; |
|
@endcode |
|
- **HierarchicalClusteringIndexParams** When passing an object of this type the index constructed |
|
will be a hierarchical tree of clusters, dividing each set of points into n clusters whose centers |
|
are picked among the points without further refinement of their position. |
|
This algorithm fits both floating, integer and binary vectors. : |
|
@code |
|
struct HierarchicalClusteringIndexParams : public IndexParams |
|
{ |
|
HierarchicalClusteringIndexParams( |
|
int branching = 32, |
|
flann_centers_init_t centers_init = CENTERS_RANDOM, |
|
int trees = 4, |
|
int leaf_size = 100); |
|
|
|
}; |
|
@endcode |
|
- **KMeansIndexParams** When passing an object of this type the index constructed will be a |
|
hierarchical k-means tree (one tree by default), dividing each set of points into n clusters |
|
whose barycenters are refined iteratively. |
|
Note that this algorithm has been extended to the support of binary vectors as an alternative |
|
to LSH when knn search speed is the criterium. It will also outperform LSH when processing |
|
directly (i.e. without the use of MCA/PCA) datasets whose points share mostly the same values |
|
for most of the dimensions. It is recommended to set more than one tree with binary data. : |
|
@code |
|
struct KMeansIndexParams : public IndexParams |
|
{ |
|
KMeansIndexParams( |
|
int branching = 32, |
|
int iterations = 11, |
|
flann_centers_init_t centers_init = CENTERS_RANDOM, |
|
float cb_index = 0.2 ); |
|
|
|
KMeansIndexParams( |
|
int branching, |
|
int iterations, |
|
flann_centers_init_t centers_init, |
|
float cb_index, |
|
int trees ); |
|
}; |
|
@endcode |
|
- **CompositeIndexParams** When using a parameters object of this type the index created |
|
combines the randomized kd-trees and the hierarchical k-means tree. : |
|
@code |
|
struct CompositeIndexParams : public IndexParams |
|
{ |
|
CompositeIndexParams( |
|
int trees = 4, |
|
int branching = 32, |
|
int iterations = 11, |
|
flann_centers_init_t centers_init = CENTERS_RANDOM, |
|
float cb_index = 0.2 ); |
|
}; |
|
@endcode |
|
- **LshIndexParams** When using a parameters object of this type the index created uses |
|
multi-probe LSH (by Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search |
|
by Qin Lv, William Josephson, Zhe Wang, Moses Charikar, Kai Li., Proceedings of the 33rd |
|
International Conference on Very Large Data Bases (VLDB). Vienna, Austria. September 2007). |
|
This algorithm is designed for binary vectors. : |
|
@code |
|
struct LshIndexParams : public IndexParams |
|
{ |
|
LshIndexParams( |
|
unsigned int table_number, |
|
unsigned int key_size, |
|
unsigned int multi_probe_level ); |
|
}; |
|
@endcode |
|
- **AutotunedIndexParams** When passing an object of this type the index created is |
|
automatically tuned to offer the best performance, by choosing the optimal index type |
|
(randomized kd-trees, hierarchical kmeans, linear) and parameters for the dataset provided. : |
|
@code |
|
struct AutotunedIndexParams : public IndexParams |
|
{ |
|
AutotunedIndexParams( |
|
float target_precision = 0.9, |
|
float build_weight = 0.01, |
|
float memory_weight = 0, |
|
float sample_fraction = 0.1 ); |
|
}; |
|
@endcode |
|
- **SavedIndexParams** This object type is used for loading a previously saved index from the |
|
disk. : |
|
@code |
|
struct SavedIndexParams : public IndexParams |
|
{ |
|
SavedIndexParams( String filename ); |
|
}; |
|
@endcode |
|
*/ |
|
GenericIndex(const Mat& features, const ::cvflann::IndexParams& params, Distance distance = Distance()); |
|
|
|
~GenericIndex(); |
|
|
|
/** @brief Performs a K-nearest neighbor search for a given query point using the index. |
|
|
|
@param query The query point |
|
@param indices Vector that will contain the indices of the K-nearest neighbors found. It must have |
|
at least knn size. |
|
@param dists Vector that will contain the distances to the K-nearest neighbors found. It must have |
|
at least knn size. |
|
@param knn Number of nearest neighbors to search for. |
|
@param params SearchParams |
|
*/ |
|
void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, |
|
std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params); |
|
void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params); |
|
|
|
/** @brief Performs a radius nearest neighbor search for a given query point using the index. |
|
|
|
@param query The query point. |
|
@param indices Vector that will contain the indices of the nearest neighbors found. |
|
@param dists Vector that will contain the distances to the nearest neighbors found. It has the same |
|
number of elements as indices. |
|
@param radius The search radius. |
|
@param params SearchParams |
|
|
|
This function returns the number of nearest neighbors found. |
|
*/ |
|
int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, |
|
std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params); |
|
int radiusSearch(const Mat& query, Mat& indices, Mat& dists, |
|
DistanceType radius, const ::cvflann::SearchParams& params); |
|
|
|
void save(String filename) { nnIndex->save(filename); } |
|
|
|
int veclen() const { return nnIndex->veclen(); } |
|
|
|
int size() const { return (int)nnIndex->size(); } |
|
|
|
::cvflann::IndexParams getParameters() { return nnIndex->getParameters(); } |
|
|
|
CV_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); } |
|
|
|
private: |
|
::cvflann::Index<Distance>* nnIndex; |
|
Mat _dataset; |
|
}; |
|
|
|
//! @cond IGNORED |
|
|
|
#define FLANN_DISTANCE_CHECK \ |
|
if ( ::cvflann::flann_distance_type() != cvflann::FLANN_DIST_L2) { \ |
|
printf("[WARNING] You are using cv::flann::Index (or cv::flann::GenericIndex) and have also changed "\ |
|
"the distance using cvflann::set_distance_type. This is no longer working as expected "\ |
|
"(cv::flann::Index always uses L2). You should create the index templated on the distance, "\ |
|
"for example for L1 distance use: GenericIndex< L1<float> > \n"); \ |
|
} |
|
|
|
|
|
template <typename Distance> |
|
GenericIndex<Distance>::GenericIndex(const Mat& dataset, const ::cvflann::IndexParams& params, Distance distance) |
|
: _dataset(dataset) |
|
{ |
|
CV_Assert(dataset.type() == CvType<ElementType>::type()); |
|
CV_Assert(dataset.isContinuous()); |
|
::cvflann::Matrix<ElementType> m_dataset((ElementType*)_dataset.ptr<ElementType>(0), _dataset.rows, _dataset.cols); |
|
|
|
nnIndex = new ::cvflann::Index<Distance>(m_dataset, params, distance); |
|
|
|
FLANN_DISTANCE_CHECK |
|
|
|
nnIndex->buildIndex(); |
|
} |
|
|
|
template <typename Distance> |
|
GenericIndex<Distance>::~GenericIndex() |
|
{ |
|
delete nnIndex; |
|
} |
|
|
|
template <typename Distance> |
|
void GenericIndex<Distance>::knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams) |
|
{ |
|
::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); |
|
::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); |
|
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); |
|
|
|
FLANN_DISTANCE_CHECK |
|
|
|
nnIndex->knnSearch(m_query,m_indices,m_dists,knn,searchParams); |
|
} |
|
|
|
|
|
template <typename Distance> |
|
void GenericIndex<Distance>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams) |
|
{ |
|
CV_Assert(queries.type() == CvType<ElementType>::type()); |
|
CV_Assert(queries.isContinuous()); |
|
::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols); |
|
|
|
CV_Assert(indices.type() == CV_32S); |
|
CV_Assert(indices.isContinuous()); |
|
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols); |
|
|
|
CV_Assert(dists.type() == CvType<DistanceType>::type()); |
|
CV_Assert(dists.isContinuous()); |
|
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); |
|
|
|
FLANN_DISTANCE_CHECK |
|
|
|
nnIndex->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); |
|
} |
|
|
|
template <typename Distance> |
|
int GenericIndex<Distance>::radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) |
|
{ |
|
::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); |
|
::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); |
|
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); |
|
|
|
FLANN_DISTANCE_CHECK |
|
|
|
return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
|
} |
|
|
|
template <typename Distance> |
|
int GenericIndex<Distance>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) |
|
{ |
|
CV_Assert(query.type() == CvType<ElementType>::type()); |
|
CV_Assert(query.isContinuous()); |
|
::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols); |
|
|
|
CV_Assert(indices.type() == CV_32S); |
|
CV_Assert(indices.isContinuous()); |
|
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols); |
|
|
|
CV_Assert(dists.type() == CvType<DistanceType>::type()); |
|
CV_Assert(dists.isContinuous()); |
|
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); |
|
|
|
FLANN_DISTANCE_CHECK |
|
|
|
return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
|
} |
|
|
|
/** |
|
* @deprecated Use GenericIndex class instead |
|
*/ |
|
template <typename T> |
|
class Index_ |
|
{ |
|
public: |
|
typedef typename L2<T>::ElementType ElementType; |
|
typedef typename L2<T>::ResultType DistanceType; |
|
|
|
CV_DEPRECATED Index_(const Mat& dataset, const ::cvflann::IndexParams& params) |
|
{ |
|
printf("[WARNING] The cv::flann::Index_<T> class is deperecated, use cv::flann::GenericIndex<Distance> instead\n"); |
|
|
|
CV_Assert(dataset.type() == CvType<ElementType>::type()); |
|
CV_Assert(dataset.isContinuous()); |
|
::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols); |
|
|
|
if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) { |
|
nnIndex_L1 = NULL; |
|
nnIndex_L2 = new ::cvflann::Index< L2<ElementType> >(m_dataset, params); |
|
} |
|
else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) { |
|
nnIndex_L1 = new ::cvflann::Index< L1<ElementType> >(m_dataset, params); |
|
nnIndex_L2 = NULL; |
|
} |
|
else { |
|
printf("[ERROR] cv::flann::Index_<T> only provides backwards compatibility for the L1 and L2 distances. " |
|
"For other distance types you must use cv::flann::GenericIndex<Distance>\n"); |
|
CV_Assert(0); |
|
} |
|
if (nnIndex_L1) nnIndex_L1->buildIndex(); |
|
if (nnIndex_L2) nnIndex_L2->buildIndex(); |
|
} |
|
CV_DEPRECATED ~Index_() |
|
{ |
|
if (nnIndex_L1) delete nnIndex_L1; |
|
if (nnIndex_L2) delete nnIndex_L2; |
|
} |
|
|
|
CV_DEPRECATED void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams) |
|
{ |
|
::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); |
|
::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); |
|
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); |
|
|
|
if (nnIndex_L1) nnIndex_L1->knnSearch(m_query,m_indices,m_dists,knn,searchParams); |
|
if (nnIndex_L2) nnIndex_L2->knnSearch(m_query,m_indices,m_dists,knn,searchParams); |
|
} |
|
CV_DEPRECATED void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams) |
|
{ |
|
CV_Assert(queries.type() == CvType<ElementType>::type()); |
|
CV_Assert(queries.isContinuous()); |
|
::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols); |
|
|
|
CV_Assert(indices.type() == CV_32S); |
|
CV_Assert(indices.isContinuous()); |
|
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols); |
|
|
|
CV_Assert(dists.type() == CvType<DistanceType>::type()); |
|
CV_Assert(dists.isContinuous()); |
|
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); |
|
|
|
if (nnIndex_L1) nnIndex_L1->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); |
|
if (nnIndex_L2) nnIndex_L2->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); |
|
} |
|
|
|
CV_DEPRECATED int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) |
|
{ |
|
::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); |
|
::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); |
|
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); |
|
|
|
if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
|
if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
|
} |
|
|
|
CV_DEPRECATED int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) |
|
{ |
|
CV_Assert(query.type() == CvType<ElementType>::type()); |
|
CV_Assert(query.isContinuous()); |
|
::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols); |
|
|
|
CV_Assert(indices.type() == CV_32S); |
|
CV_Assert(indices.isContinuous()); |
|
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols); |
|
|
|
CV_Assert(dists.type() == CvType<DistanceType>::type()); |
|
CV_Assert(dists.isContinuous()); |
|
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); |
|
|
|
if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
|
if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
|
} |
|
|
|
CV_DEPRECATED void save(String filename) |
|
{ |
|
if (nnIndex_L1) nnIndex_L1->save(filename); |
|
if (nnIndex_L2) nnIndex_L2->save(filename); |
|
} |
|
|
|
CV_DEPRECATED int veclen() const |
|
{ |
|
if (nnIndex_L1) return nnIndex_L1->veclen(); |
|
if (nnIndex_L2) return nnIndex_L2->veclen(); |
|
} |
|
|
|
CV_DEPRECATED int size() const |
|
{ |
|
if (nnIndex_L1) return nnIndex_L1->size(); |
|
if (nnIndex_L2) return nnIndex_L2->size(); |
|
} |
|
|
|
CV_DEPRECATED ::cvflann::IndexParams getParameters() |
|
{ |
|
if (nnIndex_L1) return nnIndex_L1->getParameters(); |
|
if (nnIndex_L2) return nnIndex_L2->getParameters(); |
|
|
|
} |
|
|
|
CV_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() |
|
{ |
|
if (nnIndex_L1) return nnIndex_L1->getIndexParameters(); |
|
if (nnIndex_L2) return nnIndex_L2->getIndexParameters(); |
|
} |
|
|
|
private: |
|
// providing backwards compatibility for L2 and L1 distances (most common) |
|
::cvflann::Index< L2<ElementType> >* nnIndex_L2; |
|
::cvflann::Index< L1<ElementType> >* nnIndex_L1; |
|
}; |
|
|
|
//! @endcond |
|
|
|
/** @brief Clusters features using hierarchical k-means algorithm. |
|
|
|
@param features The points to be clustered. The matrix must have elements of type |
|
Distance::ElementType. |
|
@param centers The centers of the clusters obtained. The matrix must have type |
|
Distance::CentersType. The number of rows in this matrix represents the number of clusters desired, |
|
however, because of the way the cut in the hierarchical tree is chosen, the number of clusters |
|
computed will be the highest number of the form (branching-1)\*k+1 that's lower than the number of |
|
clusters desired, where branching is the tree's branching factor (see description of the |
|
KMeansIndexParams). |
|
@param params Parameters used in the construction of the hierarchical k-means tree. |
|
@param d Distance to be used for clustering. |
|
|
|
The method clusters the given feature vectors by constructing a hierarchical k-means tree and |
|
choosing a cut in the tree that minimizes the cluster's variance. It returns the number of clusters |
|
found. |
|
*/ |
|
template <typename Distance> |
|
int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params, |
|
Distance d = Distance()) |
|
{ |
|
typedef typename Distance::ElementType ElementType; |
|
typedef typename Distance::CentersType CentersType; |
|
|
|
CV_Assert(features.type() == CvType<ElementType>::type()); |
|
CV_Assert(features.isContinuous()); |
|
::cvflann::Matrix<ElementType> m_features((ElementType*)features.ptr<ElementType>(0), features.rows, features.cols); |
|
|
|
CV_Assert(centers.type() == CvType<CentersType>::type()); |
|
CV_Assert(centers.isContinuous()); |
|
::cvflann::Matrix<CentersType> m_centers((CentersType*)centers.ptr<CentersType>(0), centers.rows, centers.cols); |
|
|
|
return ::cvflann::hierarchicalClustering<Distance>(m_features, m_centers, params, d); |
|
} |
|
|
|
//! @cond IGNORED |
|
|
|
template <typename ELEM_TYPE, typename DIST_TYPE> |
|
CV_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params) |
|
{ |
|
printf("[WARNING] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> is deprecated, use " |
|
"cv::flann::hierarchicalClustering<Distance> instead\n"); |
|
|
|
if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) { |
|
return hierarchicalClustering< L2<ELEM_TYPE> >(features, centers, params); |
|
} |
|
else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) { |
|
return hierarchicalClustering< L1<ELEM_TYPE> >(features, centers, params); |
|
} |
|
else { |
|
printf("[ERROR] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> only provides backwards " |
|
"compatibility for the L1 and L2 distances. " |
|
"For other distance types you must use cv::flann::hierarchicalClustering<Distance>\n"); |
|
CV_Assert(0); |
|
} |
|
} |
|
|
|
//! @endcond |
|
|
|
//! @} flann |
|
|
|
} } // namespace cv::flann |
|
|
|
#endif
|
|
|