Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

146 lines
5.4 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
namespace opencv_test { namespace {
class Test_Graph_Simplifier : public ::testing::Test {
public:
bool required;
Test_Graph_Simplifier() : required(true) {}
void test_conformance(const std::string &basename, const std::string &expected_layer) {
test(basename + std::string("/model"), std::vector<std::string>{expected_layer}, std::string("dnn/onnx/conformance/node/"));
}
void test(const std::string &basename, const std::string &expected_layer) {
test(basename, std::vector<std::string>{expected_layer});
}
void test(const std::string &basename, const std::vector<std::string> &expected_layers, const std::string &model_path_prefix = std::string("dnn/onnx/models/")) {
std::string model_path = findDataFile(model_path_prefix + basename + std::string(".onnx"), required);
auto net = readNet(model_path);
std::vector<std::string> layers;
net.getLayerTypes(layers);
// remove Const, Identity (output layer), __NetInputLayer__ (input layer)
layers.erase(std::remove_if(layers.begin(), layers.end(), [] (const std::string l) { return l == "Const" || l == "Identity" || l == "__NetInputLayer__"; }), layers.end());
EXPECT_EQ(layers, expected_layers);
}
};
TEST_F(Test_Graph_Simplifier, GeluSubGraph) {
test("gelu", "Gelu");
test("bias_gelu", std::vector<std::string>{"Gelu", "NaryEltwise"});
}
TEST_F(Test_Graph_Simplifier, GeluApproximationSubGraph) {
test("gelu_approximation", "GeluApproximation");
}
TEST_F(Test_Graph_Simplifier, LayerNormSubGraph) {
test("layer_norm_expanded", "LayerNormalization");
test("layer_norm_expanded_with_initializers", "LayerNormalization");
}
TEST_F(Test_Graph_Simplifier, LayerNormNoFusionSubGraph) {
test("layer_norm_no_fusion", std::vector<std::string>{"NaryEltwise", "Reduce", "Sqrt"});
}
TEST_F(Test_Graph_Simplifier, ResizeSubgraph) {
/* Test for 6 subgraphs:
- GatherCastSubgraph
- MulCastSubgraph
- UpsampleSubgraph
- ResizeSubgraph1
- ResizeSubgraph2
- ResizeSubgraph3
*/
test("upsample_unfused_torch1.2", std::vector<std::string>{"BatchNorm", "Resize"});
test("resize_nearest_unfused_opset11_torch1.3", std::vector<std::string>{"BatchNorm", "Convolution", "Resize"});
test("resize_nearest_unfused_opset11_torch1.4", std::vector<std::string>{"BatchNorm", "Convolution", "Resize"});
test("upsample_unfused_opset9_torch1.4", std::vector<std::string>{"BatchNorm", "Convolution", "Resize"});
test("two_resizes_with_shared_subgraphs", std::vector<std::string>{"NaryEltwise", "Resize"});
}
TEST_F(Test_Graph_Simplifier, SoftmaxSubgraph) {
/* Test for 3 subgraphs
- SoftMaxSubgraph
- SoftMaxSubgraph2 (conformance)
- LogSoftMaxSubgraph (conformance)
*/
test("softmax_unfused", "Softmax");
test_conformance("test_softmax_example_expanded", "Softmax");
test_conformance("test_softmax_axis_2_expanded", "Softmax");
test_conformance("test_softmax_default_axis_expanded", "Softmax");
test_conformance("test_softmax_axis_0_expanded", "Softmax");
test_conformance("test_softmax_axis_1_expanded", "Softmax");
test_conformance("test_softmax_large_number_expanded", "Softmax");
test_conformance("test_softmax_negative_axis_expanded", "Softmax");
test_conformance("test_logsoftmax_axis_2_expanded", "Softmax");
test_conformance("test_logsoftmax_example_1_expanded", "Softmax");
test_conformance("test_logsoftmax_negative_axis_expanded", "Softmax");
test_conformance("test_logsoftmax_axis_0_expanded", "Softmax");
test_conformance("test_logsoftmax_axis_1_expanded", "Softmax");
test_conformance("test_logsoftmax_large_number_expanded", "Softmax");
test_conformance("test_logsoftmax_default_axis_expanded", "Softmax");
}
TEST_F(Test_Graph_Simplifier, HardSwishSubgraph) {
test_conformance("test_hardswish_expanded", "HardSwish");
}
TEST_F(Test_Graph_Simplifier, CeluSubgraph) {
test_conformance("test_celu_expanded", "Celu");
}
TEST_F(Test_Graph_Simplifier, NormalizeSubgraph) {
/* Test for 6 subgraphs
- NormalizeSubgraph1
- NormalizeSubgraph2
- NormalizeSubgraph2_2
- NormalizeSubgraph3
- NormalizeSubgraph4
- NormalizeSubgraph5
*/
test("reduceL2_subgraph_2", "Normalize");
test("reduceL2_subgraph", "Normalize");
test("normalize_fusion", "Normalize");
}
TEST_F(Test_Graph_Simplifier, BatchNormalizationSubgraph) {
/* Test for 2 subgraphs
- BatchNormalizationSubgraph1
- BatchNormalizationSubgraph2
*/
test("frozenBatchNorm2d", "BatchNorm");
test("batch_norm_subgraph", "BatchNorm");
}
TEST_F(Test_Graph_Simplifier, ExpandSubgraph) {
test("expand_neg_batch", "Expand");
}
TEST_F(Test_Graph_Simplifier, MishSubgraph) {
/* Test for 2 subgraphs
- SoftplusSubgraph
- MishSubgraph
*/
test("mish_no_softplus", "Mish");
test("mish", "Mish");
}
TEST_F(Test_Graph_Simplifier, AttentionSubgraph) {
/* Test for 2 subgraphs
- AttentionSubgraph
- AttentionSingleHeadSubgraph
*/
test("attention", "Attention");
test("attention_single_head", "Attention");
}
}}