Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

90 lines
2.5 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "perf_precomp.hpp"
namespace opencv_test {
struct LstmParams {
// Batch size
int nrSamples;
// Size of the input vector
int inputSize;
// Size of the internal state vector
int hiddenSize;
// Number of timesteps for the LSTM
int nrSteps;
};
static inline void PrintTo(const LstmParams& params, ::std::ostream* os) {
(*os) << "BATCH=" << params.nrSamples
<< ", IN=" << params.inputSize
<< ", HIDDEN=" << params.hiddenSize
<< ", TS=" << params.nrSteps;
}
static const LstmParams testLstmConfigs[] = {
{1, 192, 192, 100},
{1, 1024, 192, 100},
{1, 64, 192, 100},
{1, 192, 512, 100},
{64, 192, 192, 2},
{64, 1024, 192, 2},
{64, 64, 192, 2},
{64, 192, 512, 2},
{128, 192, 192, 2},
{128, 1024, 192, 2},
{128, 64, 192, 2},
{128, 192, 512, 2}
};
class Layer_LSTM : public TestBaseWithParam<LstmParams> {};
PERF_TEST_P_(Layer_LSTM, lstm) {
const LstmParams& params = GetParam();
LayerParams lp;
lp.type = "LSTM";
lp.name = "testLstm";
lp.set("produce_cell_output", false);
lp.set("use_timestamp_dim", true);
Mat weightH(params.hiddenSize * 4, params.hiddenSize, CV_32FC1, cv::Scalar(0));
Mat weightX(params.hiddenSize * 4, params.inputSize, CV_32FC1, cv::Scalar(0));
Mat bias(params.hiddenSize * 4, 1, CV_32FC1, cv::Scalar(0));
Mat hInternal(params.nrSteps, params.hiddenSize, CV_32FC1, cv::Scalar(0));
Mat cInternal(params.nrSteps, params.hiddenSize, CV_32FC1, cv::Scalar(0));
lp.blobs.push_back(weightH);
lp.blobs.push_back(weightX);
lp.blobs.push_back(bias);
lp.blobs.push_back(hInternal);
lp.blobs.push_back(cInternal);
std::vector<int> inputDims;
inputDims.push_back(params.nrSamples);
inputDims.push_back(params.nrSteps);
inputDims.push_back(params.inputSize);
Mat input(inputDims.size(), inputDims.data(), CV_32FC1);
input = cv::Scalar(0);
Net net;
net.addLayerToPrev(lp.name, lp.type, lp);
net.setInput(input);
// Warm up
std::vector<Mat> outputs(2);
net.forward(outputs, "testLstm");
TEST_CYCLE()
{
net.forward(outputs, "testLstm");
}
SANITY_CHECK_NOTHING();
}
INSTANTIATE_TEST_CASE_P(/**/, Layer_LSTM, testing::ValuesIn(testLstmConfigs));
} // namespace