Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
949 lines
35 KiB
949 lines
35 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "../precomp.hpp" |
|
#include "../op_cuda.hpp" |
|
#include "../op_inf_engine.hpp" |
|
#include "../ie_ngraph.hpp" |
|
#include "../op_cann.hpp" |
|
|
|
#include "layers_common.hpp" |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
|
|
#include <opencv2/core/utils/logger.hpp> |
|
|
|
#ifdef HAVE_OPENCL |
|
#include "opencl_kernels_dnn.hpp" |
|
#endif |
|
|
|
#ifdef HAVE_CUDA |
|
#include "../cuda4dnn/primitives/slice.hpp" |
|
using namespace cv::dnn::cuda4dnn; |
|
#endif |
|
|
|
namespace cv |
|
{ |
|
namespace dnn |
|
{ |
|
|
|
Range normalizeRange(const Range& input_range, int n) |
|
{ |
|
Range range = input_range; |
|
|
|
range.start = std::min(std::max(range.start, -n), n - 1); |
|
if (range.start < 0) |
|
{ |
|
range.start += n; |
|
} |
|
|
|
range.end = std::min(std::max(range.end, -n), n); |
|
if (range.end < 0) |
|
{ |
|
range.end += n; |
|
} |
|
|
|
return range; |
|
} |
|
|
|
// TODO: support cv::Range with steps and negative steps to get rid of this transformation |
|
void tranformForNegSteps(const MatShape& inpShape, std::vector<std::vector<Range> >& sliceRanges, std::vector<std::vector<int> >& sliceSteps) |
|
{ |
|
// in case of negative steps, |
|
// x of shape [5, 10], x[5:0:-1, 10:1:-3] <=> np.flip(x[1:5:1, 2:10:3], aixs=(0, 1)) |
|
// new_end_i = start_i + 1 > dim_i ? dim_i : start_i + 1 |
|
// new_start_i = end + 1 |
|
// new_start_i = new_end_i - 1 - ((new_end_i - 1 - new_start_i) / abs(step_i)) * abs(step_i) |
|
int start, end, new_start, new_end, step; |
|
for (int i = 0; i < sliceSteps[0].size(); ++i) |
|
{ |
|
step = sliceSteps[0][i]; |
|
if (step > 0) |
|
continue; |
|
|
|
step = -step; |
|
start = sliceRanges[0][i].start; |
|
end = sliceRanges[0][i].end; |
|
new_end = start >= inpShape[i] ? inpShape[i] : start + 1; |
|
new_start = end + 1; |
|
new_start = new_end - 1 - ((new_end - 1 - new_start) / step) * step; |
|
|
|
sliceSteps[0][i] = step; |
|
sliceRanges[0][i].start = new_start; |
|
sliceRanges[0][i].end = new_end; |
|
} |
|
} |
|
|
|
std::vector<std::vector<cv::Range> > finalizeSliceRange(const MatShape& inpShape, int& axis, |
|
const std::vector<std::vector<cv::Range> >& inputSliceRanges) |
|
{ |
|
std::vector<std::vector<cv::Range> > sliceRanges = inputSliceRanges; |
|
CV_Assert(inpShape.size() > 0); |
|
bool axisNeg = (axis < 0); |
|
axis = (axis + static_cast<int>(inpShape.size())) % inpShape.size(); |
|
|
|
for (size_t i = 0; i < sliceRanges.size(); ++i){ |
|
std::vector<Range>& ranges = sliceRanges[i]; |
|
if (axisNeg) |
|
{ |
|
ranges.insert(ranges.begin(), axis, Range::all()); |
|
} |
|
|
|
for (size_t j = 0; j < ranges.size(); ++j) |
|
{ |
|
int n = inpShape[j]; |
|
if (n <= 0) |
|
{ |
|
continue; |
|
} |
|
|
|
ranges[j] = normalizeRange(ranges[j], n); |
|
} |
|
} |
|
|
|
return sliceRanges; |
|
} |
|
|
|
class SliceLayerImpl : public SliceLayer |
|
{ |
|
public: |
|
SliceLayerImpl(const LayerParams& params) |
|
{ |
|
setParamsFrom(params); |
|
hasSteps = false; |
|
axis = params.get<int>("axis", 1); |
|
num_split = params.get<int>("num_split", 0); |
|
hasDynamicShapes = params.get<bool>("has_dynamic_shapes", false); |
|
shapesInitialized = !hasDynamicShapes; |
|
|
|
if (params.has("slice_point")) |
|
{ |
|
CV_Assert(!params.has("begin") && !params.has("size") && !params.has("end")); |
|
const DictValue &indicesValue = params.get("slice_point"); |
|
int size = axis > 0 ? axis + 1 : 1; |
|
sliceRanges.resize(indicesValue.size() + 1, |
|
std::vector<Range>(size, Range::all())); |
|
int prevSlice = 0; |
|
for (int i = 0; i < indicesValue.size(); ++i) |
|
{ |
|
sliceRanges[i][size - 1].start = prevSlice; |
|
sliceRanges[i][size - 1].end = indicesValue.get<int>(i); |
|
prevSlice = sliceRanges[i][size - 1].end; |
|
} |
|
sliceRanges.back()[size - 1].start = prevSlice; |
|
} |
|
else if (params.has("begin")) |
|
{ |
|
CV_Assert(params.has("size") ^ params.has("end")); |
|
const DictValue &begins = params.get("begin"); |
|
const DictValue &sizesOrEnds = params.has("size") ? params.get("size") : params.get("end"); |
|
CV_Assert(begins.size() == sizesOrEnds.size()); |
|
|
|
if (params.has("steps")) |
|
{ |
|
const DictValue &steps = params.get("steps"); |
|
sliceSteps.resize(1); |
|
sliceSteps[0].resize(steps.size()); |
|
|
|
for (int i = 0; i < steps.size(); ++i) |
|
{ |
|
int step = steps.get<int>(i); |
|
CV_Assert(step != 0); |
|
if (step < 0) |
|
neg_step_dims.push_back(i); |
|
if (std::abs(step) > 1) |
|
hasSteps = true; |
|
sliceSteps[0][i] = step; |
|
} |
|
} |
|
|
|
sliceRanges.resize(1); |
|
sliceRanges[0].resize(begins.size(), Range::all()); |
|
for (int i = 0; i < begins.size(); ++i) |
|
{ |
|
int start = begins.get<int>(i); |
|
int sizeOrEnd = sizesOrEnds.get<int>(i); // It may be negative to reverse indexation. |
|
|
|
sliceRanges[0][i].start = start; |
|
if (params.has("size")) |
|
{ |
|
int size = sizeOrEnd; |
|
CV_Assert(size == -1 || size > 0); // -1 value means range [start, axis_size). |
|
sliceRanges[0][i].end = size > 0 ? (start + size) : INT_MAX; // We'll finalize a negative value later. |
|
} |
|
else |
|
{ |
|
int end = sizeOrEnd; |
|
if (hasSteps && !neg_step_dims.empty() && sliceSteps[0][i] < 0) |
|
CV_Assert(end < 0 || end != start); // if current step is negative, end < start is allowed. |
|
else |
|
CV_Assert(end < 0 || end > start); // End index is excluded. |
|
sliceRanges[0][i].end = end; // We'll finalize a negative value later. |
|
} |
|
} |
|
} |
|
} |
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE |
|
{ |
|
#ifdef HAVE_INF_ENGINE |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
return sliceRanges.size() == 1 && !hasSteps && neg_step_dims.empty(); |
|
#endif |
|
#ifdef HAVE_CUDA |
|
if (backendId == DNN_BACKEND_CUDA) |
|
return !hasSteps && neg_step_dims.empty(); |
|
#endif |
|
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CANN; |
|
} |
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const CV_OVERRIDE |
|
{ |
|
CV_Assert(inputs.size() == 1); |
|
MatShape inpShape = inputs[0]; |
|
|
|
std::vector<std::vector<int> > sliceSteps_ = sliceSteps; |
|
std::vector<std::vector<cv::Range> > sliceRanges_ = sliceRanges; |
|
if (hasSteps && !neg_step_dims.empty()) |
|
tranformForNegSteps(inpShape, sliceRanges_, sliceSteps_); |
|
|
|
int axis_rw = axis; |
|
std::vector<std::vector<cv::Range> > sliceRanges_rw = finalizeSliceRange(inpShape, axis_rw, sliceRanges_); |
|
|
|
if (!sliceRanges_rw.empty()) |
|
{ |
|
outputs.resize(sliceRanges_rw.size(), inpShape); |
|
for (int i = 0; i < outputs.size(); ++i) |
|
{ |
|
CV_Assert(sliceRanges_rw[i].size() <= inpShape.size()); |
|
for (int j = 0; j < sliceRanges_rw[i].size(); ++j) |
|
{ |
|
if (shapesInitialized || inpShape[j] > 0) |
|
outputs[i][j] = normalizeRange(sliceRanges_rw[i][j], inpShape[j]).size(); |
|
|
|
if (!sliceSteps_.empty() && (i < sliceSteps_.size()) && (j < sliceSteps_[i].size()) && (sliceSteps_[i][j] > 1)) |
|
outputs[i][j] = (outputs[i][j] + sliceSteps_[i][j] - 1) / sliceSteps_[i][j]; |
|
} |
|
} |
|
} |
|
else // Divide input blob on equal parts by axis. |
|
{ |
|
CV_Assert(0 <= axis_rw && axis_rw < inpShape.size()); |
|
int splits = num_split ? num_split : requiredOutputs; |
|
CV_Assert(splits > 0 && inpShape[axis_rw] % splits == 0); |
|
inpShape[axis_rw] /= splits; |
|
outputs.resize(splits, inpShape); |
|
} |
|
return false; |
|
} |
|
|
|
bool updateMemoryShapes(const std::vector<MatShape> &inputs) CV_OVERRIDE |
|
{ |
|
shapesInitialized = true; |
|
return true; |
|
} |
|
|
|
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE |
|
{ |
|
#ifdef HAVE_OPENCL |
|
ocl_exec_cache.clear(); |
|
#endif |
|
|
|
std::vector<Mat> inputs, outputs; |
|
inputs_arr.getMatVector(inputs); |
|
outputs_arr.getMatVector(outputs); |
|
|
|
CV_Assert(inputs.size() == 1); |
|
MatShape inpShape = shape(inputs[0]); |
|
|
|
if (hasSteps && !neg_step_dims.empty()) |
|
tranformForNegSteps(inpShape, sliceRanges, sliceSteps); |
|
|
|
finalSliceRanges = finalizeSliceRange(shape(inputs[0]), axis, sliceRanges); |
|
|
|
if (sliceRanges.empty()) |
|
{ |
|
// Divide input blob on equal parts by axis. |
|
int outAxisSize = inpShape[axis] / outputs.size(); |
|
finalSliceRanges.resize(outputs.size(), |
|
std::vector<Range>(axis + 1, Range::all())); |
|
int prevSlice = 0; |
|
for (int i = 0; i < outputs.size(); ++i) |
|
{ |
|
finalSliceRanges[i][axis].start = prevSlice; |
|
finalSliceRanges[i][axis].end = finalSliceRanges[i][axis].start + outAxisSize; |
|
prevSlice = finalSliceRanges[i][axis].end; |
|
} |
|
} |
|
else |
|
CV_Assert(outputs.size() == sliceRanges.size()); |
|
|
|
for (int i = 0; i < outputs.size(); ++i) |
|
{ |
|
CV_Assert(finalSliceRanges[i].size() <= inpShape.size()); |
|
// Fill the rest of ranges. |
|
for (int j = finalSliceRanges[i].size(); j < inpShape.size(); ++j) |
|
{ |
|
finalSliceRanges[i].push_back(Range::all()); |
|
} |
|
// Clamp. |
|
for (int j = 0; j < finalSliceRanges[i].size(); ++j) |
|
{ |
|
finalSliceRanges[i][j] = normalizeRange(finalSliceRanges[i][j], inpShape[j]); |
|
} |
|
} |
|
|
|
if (!sliceSteps.empty() && sliceSteps[0].size() != inputs[0].dims) |
|
sliceSteps[0].resize(inputs[0].dims, 1); |
|
|
|
#if 0 |
|
std::cout << "DEBUG: DNN/Slice: " << outputs.size() << " inpShape=" << inpShape << std::endl; |
|
for (int i = 0; i < outputs.size(); ++i) |
|
{ |
|
for (int j = 0; j < finalSliceRanges[i].size(); ++j) |
|
{ |
|
std::cout << finalSliceRanges[i][j]; |
|
} |
|
std::cout << std::endl; |
|
} |
|
#endif |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
struct OpenCLExecInfo |
|
{ |
|
std::string kernel_name; |
|
std::string build_opts; |
|
size_t local_size[2]; |
|
size_t global_size[2]; |
|
|
|
OpenCLExecInfo() |
|
{ |
|
local_size[0] = local_size[1] = 0; |
|
global_size[0] = global_size[1] = 0; |
|
} |
|
}; |
|
std::vector<OpenCLExecInfo> ocl_exec_cache; |
|
|
|
void ocl_prepare(const std::vector<UMat>& inputs, const std::vector<UMat>& outputs) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
|
|
CV_Assert(outputs.size() == finalSliceRanges.size()); |
|
ocl_exec_cache.resize(outputs.size()); |
|
|
|
const UMat& input = inputs[0]; |
|
const int dims = input.dims; |
|
|
|
size_t WSZ = 128; |
|
|
|
const int elemSize = (int)input.elemSize(); |
|
String opts0 = cv::format( |
|
"-DDIMS=%d -DELEMSIZE=%d", |
|
dims, elemSize |
|
); |
|
for (int d = 0; d < dims; d++) |
|
{ |
|
opts0 += cv::format(" -DSRC_STEP_%d=%d", d, (int)input.step[dims - 1 - d]); |
|
} |
|
for (size_t i = 0; i < outputs.size(); i++) |
|
{ |
|
OpenCLExecInfo& ocl = ocl_exec_cache[i]; |
|
|
|
const UMat& output = outputs[i]; |
|
const std::vector<Range>& range = finalSliceRanges[i]; |
|
|
|
String opts = opts0; |
|
|
|
CV_CheckEQ(output.dims, dims, ""); |
|
for (int d = 0; d < dims; d++) |
|
{ |
|
opts += cv::format(" -DDST_STEP_%d=%d -DDST_SZ_%d=%d -DSRC_START_%d=%d", |
|
d, (int)output.step[dims - 1 - d], |
|
d, (int)output.size[dims - 1 - d], |
|
d, (int)range[dims - 1 - d].start |
|
); |
|
CV_CheckEQ(range[d].size(), (int)output.size[d], ""); |
|
} |
|
|
|
const size_t param_LIMIT_BLOCK_SIZE_PER_WG = WSZ * 64; |
|
|
|
int block_dims = 0; |
|
size_t block_size = elemSize; |
|
for (int i = dims - 1; i >= 0; --i) |
|
{ |
|
if (input.step[i] != output.step[i]) |
|
break; |
|
block_size *= output.size[i]; |
|
block_dims++; |
|
if (block_size >= param_LIMIT_BLOCK_SIZE_PER_WG) |
|
break; |
|
} |
|
|
|
const size_t total = output.total() * elemSize; |
|
size_t num_blocks = total / block_size; |
|
|
|
if ((num_blocks <= 8 && block_size >= WSZ * 4) || (block_size >= param_LIMIT_BLOCK_SIZE_PER_WG)) |
|
{ |
|
// use 1D copy mode |
|
opts += cv::format(" -DUSE_COPY_1D=1"); |
|
|
|
opts += cv::format(" -DBLOCK_DIMS=%d", block_dims); |
|
opts += cv::format(" -DBLOCK_DIMS_CONTIGUOUS=%d", block_dims); |
|
opts += cv::format(" -DBLOCK_SIZE=%d", (int)block_size); |
|
|
|
opts += cv::format(" -DBLOCK_COLS=%d", (int)block_size); |
|
} |
|
else |
|
{ |
|
// use 2D copy mode |
|
int block_cols = block_size; |
|
int block_dims_contiguous = block_dims; |
|
size_t input_base_step = input.step[dims - 1 - block_dims_contiguous]; |
|
size_t output_base_step = output.step[dims - 1 - block_dims_contiguous]; |
|
|
|
size_t block_rows = 1; |
|
for (int i = dims - 1 - block_dims_contiguous; i >= 0; --i) |
|
{ |
|
if (input.step[i] * output_base_step != output.step[i] * input_base_step) |
|
break; |
|
block_rows *= output.size[i]; |
|
block_dims++; |
|
} |
|
|
|
block_size *= block_rows; |
|
|
|
num_blocks = total / block_size; |
|
|
|
if (block_rows > 1) |
|
{ |
|
opts += cv::format(" -DBLOCK_DIMS=%d", block_dims); |
|
opts += cv::format(" -DBLOCK_DIMS_CONTIGUOUS=%d", block_dims_contiguous); |
|
opts += cv::format(" -DBLOCK_SIZE=%d", (int)block_size); |
|
|
|
opts += cv::format(" -DBLOCK_COLS=%d", (int)block_cols); |
|
|
|
opts += cv::format(" -DBLOCK_ROWS=%d", (int)block_rows); |
|
opts += cv::format(" -DBLOCK_SRC_STRIDE=%d", (int)input_base_step); |
|
} |
|
else |
|
{ |
|
// use 1D copy mode |
|
opts += cv::format(" -DUSE_COPY_1D=1"); |
|
|
|
opts += cv::format(" -DBLOCK_DIMS=%d", block_dims_contiguous); |
|
opts += cv::format(" -DBLOCK_DIMS_CONTIGUOUS=%d", block_dims_contiguous); |
|
opts += cv::format(" -DBLOCK_SIZE=%d", (int)block_size); |
|
|
|
opts += cv::format(" -DBLOCK_COLS=%d", (int)block_size); |
|
} |
|
} |
|
|
|
const size_t MIN_WORK_ITEMS = 16; |
|
if (block_size <= 4 * MIN_WORK_ITEMS) |
|
WSZ = 4; |
|
else if (block_size <= 8 * MIN_WORK_ITEMS) |
|
WSZ = 8; |
|
else if (block_size <= 16 * MIN_WORK_ITEMS) |
|
WSZ = 16; |
|
else if (block_size <= 32 * MIN_WORK_ITEMS) |
|
WSZ = 32; |
|
else if (block_size <= 64 * MIN_WORK_ITEMS) |
|
WSZ = 64; |
|
|
|
opts += cv::format(" -DWSZ=%d", (int)WSZ); |
|
|
|
std::ostringstream kernel_suffix; |
|
kernel_suffix << dims << 'x' << elemSize << "_bsz" << block_size; |
|
kernel_suffix << "__src_"; |
|
for (int d = 0; d < dims; d++) |
|
{ |
|
kernel_suffix << input.size[dims - 1 - d] << '_'; |
|
} |
|
kernel_suffix << '_'; |
|
/*for (int d = 0; d < dims; d++) |
|
{ |
|
kernel_suffix << input.step[dims - 1 - d] << '_'; |
|
} |
|
kernel_suffix << '_';*/ |
|
|
|
kernel_suffix << "dst_"; |
|
for (int d = 0; d < dims; d++) |
|
{ |
|
kernel_suffix << output.size[dims - 1 - d] << '_'; |
|
} |
|
/*kernel_suffix << '_'; |
|
for (int d = 0; d < dims; d++) |
|
{ |
|
kernel_suffix << output.step[dims - 1 - d] << '_'; |
|
}*/ |
|
kernel_suffix << "_slice_"; |
|
for (int d = 0; d < dims; d++) |
|
{ |
|
kernel_suffix << range[dims - 1 - d].start << '_'; |
|
} |
|
for (int d = 0; d < dims; d++) |
|
{ |
|
kernel_suffix << '_' << range[dims - 1 - d].end; |
|
} |
|
|
|
std::string kernel_suffix_str = kernel_suffix.str(); |
|
opts += cv::format(" -DSLICE_KERNEL_SUFFIX=%s", kernel_suffix_str.c_str()); |
|
|
|
ocl.kernel_name = cv::format("slice_%s", kernel_suffix_str.c_str()); |
|
ocl.build_opts = opts; |
|
ocl.local_size[0] = WSZ; |
|
ocl.local_size[1] = 1; |
|
ocl.global_size[0] = WSZ; |
|
ocl.global_size[1] = num_blocks; |
|
} // for outputs.size() |
|
} // ocl_prepare |
|
|
|
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
|
|
if (hasSteps) |
|
return false; // TODO not implemented yet: https://github.com/opencv/opencv/pull/19546 |
|
|
|
std::vector<UMat> inputs; |
|
std::vector<UMat> outputs; |
|
|
|
inputs_.getUMatVector(inputs); |
|
outputs_.getUMatVector(outputs); |
|
|
|
CV_Assert(outputs.size() == finalSliceRanges.size()); |
|
|
|
const UMat& input = inputs[0]; |
|
const int dims = input.dims; |
|
if (dims > 5) |
|
{ |
|
CV_LOG_INFO(NULL, "DNN/OpenCL/Slice: implementation doesn't support dims=" << dims << ". Fallback to CPU"); |
|
return false; |
|
} |
|
|
|
if (ocl_exec_cache.empty()) |
|
{ |
|
ocl_prepare(inputs, outputs); |
|
} |
|
CV_CheckEQ(ocl_exec_cache.size(), outputs.size(), ""); |
|
|
|
for (size_t i = 0; i < outputs.size(); i++) |
|
{ |
|
const OpenCLExecInfo& ocl = ocl_exec_cache[i]; |
|
|
|
UMat& output = outputs[i]; |
|
|
|
ocl::Kernel kernel(ocl.kernel_name.c_str(), ocl::dnn::slice_oclsrc, ocl.build_opts); |
|
if (kernel.empty()) |
|
return false; |
|
bool ret = kernel.args( |
|
ocl::KernelArg::PtrReadOnly(input), |
|
ocl::KernelArg::PtrWriteOnly(output) |
|
) |
|
.run_(2, (size_t*)ocl.global_size, (size_t*)ocl.local_size, false); |
|
if (!ret) |
|
return false; |
|
} // for outputs.size() |
|
|
|
return true; |
|
} // forward_ocl |
|
#endif |
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget), |
|
forward_ocl(inputs_arr, outputs_arr, internals_arr)) |
|
|
|
std::vector<Mat> inputs, outputs; |
|
inputs_arr.getMatVector(inputs); |
|
outputs_arr.getMatVector(outputs); |
|
|
|
const Mat& inpMat = inputs[0]; |
|
CV_Assert(outputs.size() == finalSliceRanges.size()); |
|
|
|
if (!hasSteps) |
|
{ |
|
for (size_t i = 0; i < outputs.size(); i++) |
|
{ |
|
inpMat(finalSliceRanges[i]).copyTo(outputs[i]); |
|
} |
|
} |
|
else |
|
{ |
|
int dimsNum = inpMat.dims; |
|
|
|
for (size_t i = 0; i < outputs.size(); i++) |
|
{ |
|
std::vector<int> inpIdx(dimsNum, 0); |
|
std::vector<int> outIdx(dimsNum, 0); |
|
if (inpMat.type() == CV_16S) |
|
getSliceRecursive<int16_t>(inpMat, inpIdx, finalSliceRanges[i], sliceSteps[i], 0, dimsNum, outputs[i], outIdx); |
|
else if (inpMat.type() == CV_8S) |
|
getSliceRecursive<int8_t>(inpMat, inpIdx, finalSliceRanges[i], sliceSteps[i], 0, dimsNum, outputs[i], outIdx); |
|
else |
|
getSliceRecursive<float>(inpMat, inpIdx, finalSliceRanges[i], sliceSteps[i], 0, dimsNum, outputs[i], outIdx); |
|
// flip for negative steps |
|
flip(outputs[i]); |
|
} |
|
} |
|
} |
|
|
|
#ifdef HAVE_CANN |
|
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputs, |
|
const std::vector<Ptr<BackendWrapper> > &outputs, |
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE |
|
{ |
|
bool isSplit = sliceRanges.size() > 1; |
|
auto x = inputs[0].dynamicCast<CannBackendWrapper>(); |
|
|
|
if (isSplit) |
|
{ |
|
// create operator |
|
auto op = std::make_shared<ge::op::SplitV>(name); |
|
|
|
// set attr |
|
int n_split = static_cast<int>(sliceRanges[0].size()); |
|
op->set_attr_num_split(n_split); |
|
|
|
// set inputs |
|
// set inputs : x |
|
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp(); |
|
op->set_input_x_by_name(*op_x, x->name.c_str()); |
|
auto desc_x = x->getTensorDesc(); |
|
op->update_input_desc_x(*desc_x); |
|
// set inputs : size_splits |
|
std::vector<int> size_splits(n_split); |
|
int cnt_split = 0; |
|
for (size_t i = 0; i < sliceRanges.size() - 1; ++i) |
|
{ |
|
auto target_range = sliceRanges[i].back(); |
|
size_splits[i] = target_range.end - target_range.start; |
|
cnt_split += size_splits[i]; |
|
} |
|
auto shape_x = desc_x->GetShape().GetDims(); |
|
CV_CheckGT(shape_x[axis], cnt_split, "DNN/CANN: invalid splits"); |
|
size_splits[n_split - 1] = shape_x[axis] - cnt_split; |
|
std::vector<int> shape_size_splits{(int)size_splits.size()}; |
|
Mat size_splits_mat(shape_size_splits, CV_32S, size_splits.data()); |
|
auto op_const_size_splits = std::make_shared<CannConstOp>(size_splits_mat.data, size_splits_mat.type(), shape_size_splits, cv::format("%s_size_splits", name.c_str())); |
|
op->set_input_size_splits(*(op_const_size_splits->getOp())); |
|
op->update_input_desc_size_splits(*(op_const_size_splits->getTensorDesc())); |
|
// set inputs : split_dim |
|
Mat split_dim_mat(1, 1, CV_32S, Scalar(axis)); |
|
std::vector<int> split_dim_shape{1}; |
|
auto op_const_split_dim = std::make_shared<CannConstOp>(split_dim_mat.data, split_dim_mat.type(), split_dim_shape, cv::format("%s_split_dim", name.c_str())); |
|
op->set_input_split_dim(*(op_const_split_dim->getOp())); |
|
op->update_input_desc_split_dim(*(op_const_split_dim->getTensorDesc())); |
|
|
|
// set outputs |
|
op->create_dynamic_output_y(n_split); |
|
for (uint32_t i = 0; i < n_split; ++i) |
|
{ |
|
auto desc_output_y_i = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT); |
|
op->update_dynamic_output_desc_y(i, *desc_output_y_i); |
|
} |
|
|
|
return Ptr<BackendNode>(new CannBackendNode(op)); |
|
} |
|
|
|
// ONNX-Slice |
|
CV_CheckEQ(sliceRanges.size(), (size_t)1, ""); |
|
if (hasSteps) |
|
{ |
|
CV_CheckEQ(sliceSteps.size(), (size_t)1, "DNN/CANN/Slice: no support to multiple slices"); |
|
CV_CheckEQ(sliceRanges[0].size(), sliceSteps[0].size(), "DNN/CANN/Slice: number of slice ranges does not match number of slice steps"); |
|
} |
|
|
|
const int dims = x->host->dims; |
|
|
|
// create operator |
|
auto op = std::make_shared<ge::op::StridedSliceV2>(name); |
|
|
|
// retrieve begins, ends, axes and steps |
|
std::vector<int> begins, ends, axes, steps; |
|
for (int i = 0; i < sliceRanges[0].size(); i++) |
|
{ |
|
begins.push_back(sliceRanges[0][i].start); |
|
ends.push_back(sliceRanges[0][i].end); |
|
axes.push_back(i); |
|
if (hasSteps) |
|
steps.push_back(sliceSteps[0][i]); |
|
else |
|
steps.push_back(1); // put 1 by default |
|
} |
|
std::vector<int> shape_{dims}; |
|
|
|
// set inputs |
|
// set inputs : x |
|
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp(); |
|
op->set_input_x_by_name(*op_x, x->name.c_str()); |
|
auto x_desc = x->getTensorDesc(); |
|
op->update_input_desc_x(*x_desc); |
|
// set inputs : begin |
|
Mat begin_mat(shape_, CV_32S, &begins[0]); |
|
auto op_const_begin = std::make_shared<CannConstOp>(begin_mat.data, begin_mat.type(), shape_, cv::format("%s_begin", name.c_str())); |
|
op->set_input_begin(*(op_const_begin->getOp())); |
|
op->update_input_desc_begin(*(op_const_begin->getTensorDesc())); |
|
// set inputs : end |
|
Mat end_mat(shape_, CV_32S, &ends[0]); |
|
auto op_const_end = std::make_shared<CannConstOp>(end_mat.data, end_mat.type(), shape_, cv::format("%s_end", name.c_str())); |
|
op->set_input_end(*(op_const_end->getOp())); |
|
op->update_input_desc_end(*(op_const_end->getTensorDesc())); |
|
// set inputs : axes |
|
Mat axes_mat(shape_, CV_32S, &axes[0]); |
|
auto op_const_axes = std::make_shared<CannConstOp>(axes_mat.data, axes_mat.type(), shape_, cv::format("%s_axes", name.c_str())); |
|
op->set_input_axes(*(op_const_axes->getOp())); |
|
op->update_input_desc_axes(*(op_const_axes->getTensorDesc())); |
|
// set inputs : strides |
|
Mat strides_mat(shape_, CV_32S, &steps[0]); |
|
auto op_const_strides = std::make_shared<CannConstOp>(strides_mat.data, strides_mat.type(), shape_, cv::format("%s_strides", name.c_str())); |
|
op->set_input_strides(*(op_const_strides->getOp())); |
|
op->update_input_desc_strides(*(op_const_strides->getTensorDesc())); |
|
|
|
// set outputs |
|
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT); |
|
op->update_output_desc_y(*output_desc); |
|
|
|
return Ptr<BackendNode>(new CannBackendNode(op)); |
|
} |
|
#endif |
|
|
|
#ifdef HAVE_DNN_NGRAPH |
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs, |
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE |
|
{ |
|
CV_Assert_N(nodes.size() <= 2); |
|
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node; |
|
CV_Assert(finalSliceRanges[0].size() == ieInpNode.get_shape().size()); |
|
|
|
std::vector<int64_t> offsets, dims; |
|
for (int i = 0; i < finalSliceRanges[0].size(); ++i) |
|
{ |
|
offsets.push_back(finalSliceRanges[0][i].start); |
|
dims.push_back(finalSliceRanges[0][i].end); |
|
} |
|
|
|
auto lower_bounds = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, |
|
ngraph::Shape{offsets.size()}, offsets.data()); |
|
auto upper_bounds = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, |
|
ngraph::Shape{dims.size()}, dims.data()); |
|
auto strides = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, |
|
ngraph::Shape{dims.size()}, std::vector<int64_t>((int64_t)dims.size(), 1)); |
|
|
|
auto slice = std::make_shared<ngraph::op::v1::StridedSlice>(ieInpNode, |
|
lower_bounds, upper_bounds, strides, std::vector<int64_t>{}, std::vector<int64_t>{}); |
|
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(slice)); |
|
} |
|
#endif // HAVE_DNN_NGRAPH |
|
|
|
|
|
#ifdef HAVE_CUDA |
|
Ptr<BackendNode> initCUDA( |
|
void *context_, |
|
const std::vector<Ptr<BackendWrapper>>& inputs, |
|
const std::vector<Ptr<BackendWrapper>>& outputs |
|
) override |
|
{ |
|
auto context = reinterpret_cast<csl::CSLContext*>(context_); |
|
|
|
std::vector<std::vector<std::size_t>> offsets; |
|
for (const auto& ranges : finalSliceRanges) |
|
{ |
|
std::vector<std::size_t> offsets_i; |
|
for (const auto& range : ranges) |
|
offsets_i.push_back(range.start); |
|
offsets.push_back(std::move(offsets_i)); |
|
} |
|
|
|
return make_cuda_node<cuda4dnn::SliceOp>(preferableTarget, std::move(context->stream), std::move(offsets)); |
|
} |
|
#endif |
|
|
|
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales, |
|
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE |
|
{ |
|
const int numOutputs = scales[1].size(); |
|
for (int i = 0; i < numOutputs; i++) |
|
{ |
|
if (scales[1][i] != scales[0][0]) |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
private: |
|
template <typename T> |
|
void getSliceRecursive(const Mat &inpMat, std::vector<int> &inpIdx, |
|
const std::vector<Range> &sliceRanges, |
|
const std::vector<int> &sliceSteps, int dim, int dimsNum, |
|
Mat &outputs, std::vector<int> &outIdx) |
|
{ |
|
int begin = sliceRanges[dim].start; |
|
int end = sliceRanges[dim].end; |
|
int step = !sliceSteps.empty() ? sliceSteps[dim] : 1; |
|
|
|
// TODO optimization is required (for 2D tail case at least) |
|
for (int k = begin, j = 0; k < end; k += step, j++) |
|
{ |
|
inpIdx[dim] = k; |
|
outIdx[dim] = j; |
|
|
|
if (dim + 1 < dimsNum) |
|
getSliceRecursive<T>(inpMat, inpIdx, sliceRanges, sliceSteps, dim + 1, dimsNum, outputs, outIdx); |
|
else |
|
outputs.at<T>(outIdx.data()) = inpMat.at<T>(inpIdx.data()); |
|
} |
|
} |
|
|
|
void flip(Mat& output) // break if 1d tensor? |
|
{ |
|
for (int i = 0; i < neg_step_dims.size(); ++i) |
|
cv::flipND(output, output, neg_step_dims[i]); |
|
} |
|
protected: |
|
// The actual non-negative values determined from @p sliceRanges depends on input size. |
|
std::vector<std::vector<Range> > finalSliceRanges; |
|
std::vector<int> neg_step_dims; |
|
bool hasDynamicShapes; |
|
bool shapesInitialized; |
|
bool hasSteps; |
|
}; |
|
|
|
class CropLayerImpl CV_FINAL : public SliceLayerImpl |
|
{ |
|
public: |
|
CropLayerImpl(const LayerParams& params) : SliceLayerImpl(LayerParams()) |
|
{ |
|
setParamsFrom(params); |
|
axis = params.get<int>("axis", 2); |
|
const DictValue *paramOffset = params.ptr("offset"); |
|
|
|
if (paramOffset) |
|
{ |
|
for (int i = 0; i < paramOffset->size(); i++) |
|
offset.push_back(paramOffset->get<int>(i)); |
|
} |
|
} |
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const CV_OVERRIDE |
|
{ |
|
CV_Assert(inputs.size() == 2); |
|
|
|
MatShape dstShape = inputs[0]; |
|
int start = normalize_axis(axis, dstShape); |
|
for (int i = start; i < dstShape.size(); i++) |
|
{ |
|
dstShape[i] = inputs[1][i]; |
|
} |
|
outputs.resize(1, dstShape); |
|
return false; |
|
} |
|
|
|
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays) CV_OVERRIDE |
|
{ |
|
std::vector<Mat> inputs; |
|
inputs_arr.getMatVector(inputs); |
|
CV_Assert(2 == inputs.size()); |
|
|
|
const Mat &inpBlob = inputs[0]; |
|
const Mat &inpSzBlob = inputs[1]; |
|
|
|
int dims = inpBlob.dims; |
|
int start_axis = normalize_axis(axis, dims); |
|
|
|
std::vector<int> offset_final(dims, 0); |
|
if (offset.size() == 1) |
|
{ |
|
for (int i = start_axis; i < dims; i++) |
|
offset_final[i] = offset[0]; |
|
} |
|
else if (offset.size() > 1) |
|
{ |
|
if ((int)offset.size() != dims - start_axis) |
|
CV_Error(Error::StsBadArg, "number of offset values specified must be " |
|
"equal to the number of dimensions following axis."); |
|
|
|
for (int i = start_axis; i < dims; i++) |
|
offset_final[i] = offset[i - start_axis]; |
|
} |
|
|
|
finalSliceRanges.resize(1); |
|
finalSliceRanges[0].resize(dims); |
|
for (int i = 0; i < start_axis; i++) |
|
{ |
|
finalSliceRanges[0][i] = Range(0, inpBlob.size[i]); |
|
} |
|
for (int i = start_axis; i < dims; i++) |
|
{ |
|
if (offset_final[i] < 0 || offset_final[i] + inpSzBlob.size[i] > inpBlob.size[i]) |
|
CV_Error(Error::StsBadArg, "invalid crop parameters or blob sizes"); |
|
|
|
finalSliceRanges[0][i] = Range(offset_final[i], offset_final[i] + inpSzBlob.size[i]); |
|
} |
|
} |
|
|
|
private: |
|
std::vector<int> offset; |
|
}; |
|
|
|
Ptr<SliceLayer> SliceLayer::create(const LayerParams& params) |
|
{ |
|
return Ptr<SliceLayer>(new SliceLayerImpl(params)); |
|
} |
|
|
|
Ptr<Layer> CropLayer::create(const LayerParams& params) |
|
{ |
|
return Ptr<Layer>(new CropLayerImpl(params)); |
|
} |
|
|
|
} |
|
}
|
|
|