Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

949 lines
35 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "../op_cuda.hpp"
#include "../op_inf_engine.hpp"
#include "../ie_ngraph.hpp"
#include "../op_cann.hpp"
#include "layers_common.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/core/utils/logger.hpp>
#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
#endif
#ifdef HAVE_CUDA
#include "../cuda4dnn/primitives/slice.hpp"
using namespace cv::dnn::cuda4dnn;
#endif
namespace cv
{
namespace dnn
{
Range normalizeRange(const Range& input_range, int n)
{
Range range = input_range;
range.start = std::min(std::max(range.start, -n), n - 1);
if (range.start < 0)
{
range.start += n;
}
range.end = std::min(std::max(range.end, -n), n);
if (range.end < 0)
{
range.end += n;
}
return range;
}
// TODO: support cv::Range with steps and negative steps to get rid of this transformation
void tranformForNegSteps(const MatShape& inpShape, std::vector<std::vector<Range> >& sliceRanges, std::vector<std::vector<int> >& sliceSteps)
{
// in case of negative steps,
// x of shape [5, 10], x[5:0:-1, 10:1:-3] <=> np.flip(x[1:5:1, 2:10:3], aixs=(0, 1))
// new_end_i = start_i + 1 > dim_i ? dim_i : start_i + 1
// new_start_i = end + 1
// new_start_i = new_end_i - 1 - ((new_end_i - 1 - new_start_i) / abs(step_i)) * abs(step_i)
int start, end, new_start, new_end, step;
for (int i = 0; i < sliceSteps[0].size(); ++i)
{
step = sliceSteps[0][i];
if (step > 0)
continue;
step = -step;
start = sliceRanges[0][i].start;
end = sliceRanges[0][i].end;
new_end = start >= inpShape[i] ? inpShape[i] : start + 1;
new_start = end + 1;
new_start = new_end - 1 - ((new_end - 1 - new_start) / step) * step;
sliceSteps[0][i] = step;
sliceRanges[0][i].start = new_start;
sliceRanges[0][i].end = new_end;
}
}
std::vector<std::vector<cv::Range> > finalizeSliceRange(const MatShape& inpShape, int& axis,
const std::vector<std::vector<cv::Range> >& inputSliceRanges)
{
std::vector<std::vector<cv::Range> > sliceRanges = inputSliceRanges;
CV_Assert(inpShape.size() > 0);
bool axisNeg = (axis < 0);
axis = (axis + static_cast<int>(inpShape.size())) % inpShape.size();
for (size_t i = 0; i < sliceRanges.size(); ++i){
std::vector<Range>& ranges = sliceRanges[i];
if (axisNeg)
{
ranges.insert(ranges.begin(), axis, Range::all());
}
for (size_t j = 0; j < ranges.size(); ++j)
{
int n = inpShape[j];
if (n <= 0)
{
continue;
}
ranges[j] = normalizeRange(ranges[j], n);
}
}
return sliceRanges;
}
class SliceLayerImpl : public SliceLayer
{
public:
SliceLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
hasSteps = false;
axis = params.get<int>("axis", 1);
num_split = params.get<int>("num_split", 0);
hasDynamicShapes = params.get<bool>("has_dynamic_shapes", false);
shapesInitialized = !hasDynamicShapes;
if (params.has("slice_point"))
{
CV_Assert(!params.has("begin") && !params.has("size") && !params.has("end"));
const DictValue &indicesValue = params.get("slice_point");
int size = axis > 0 ? axis + 1 : 1;
sliceRanges.resize(indicesValue.size() + 1,
std::vector<Range>(size, Range::all()));
int prevSlice = 0;
for (int i = 0; i < indicesValue.size(); ++i)
{
sliceRanges[i][size - 1].start = prevSlice;
sliceRanges[i][size - 1].end = indicesValue.get<int>(i);
prevSlice = sliceRanges[i][size - 1].end;
}
sliceRanges.back()[size - 1].start = prevSlice;
}
else if (params.has("begin"))
{
CV_Assert(params.has("size") ^ params.has("end"));
const DictValue &begins = params.get("begin");
const DictValue &sizesOrEnds = params.has("size") ? params.get("size") : params.get("end");
CV_Assert(begins.size() == sizesOrEnds.size());
if (params.has("steps"))
{
const DictValue &steps = params.get("steps");
sliceSteps.resize(1);
sliceSteps[0].resize(steps.size());
for (int i = 0; i < steps.size(); ++i)
{
int step = steps.get<int>(i);
CV_Assert(step != 0);
if (step < 0)
neg_step_dims.push_back(i);
if (std::abs(step) > 1)
hasSteps = true;
sliceSteps[0][i] = step;
}
}
sliceRanges.resize(1);
sliceRanges[0].resize(begins.size(), Range::all());
for (int i = 0; i < begins.size(); ++i)
{
int start = begins.get<int>(i);
int sizeOrEnd = sizesOrEnds.get<int>(i); // It may be negative to reverse indexation.
sliceRanges[0][i].start = start;
if (params.has("size"))
{
int size = sizeOrEnd;
CV_Assert(size == -1 || size > 0); // -1 value means range [start, axis_size).
sliceRanges[0][i].end = size > 0 ? (start + size) : INT_MAX; // We'll finalize a negative value later.
}
else
{
int end = sizeOrEnd;
if (hasSteps && !neg_step_dims.empty() && sliceSteps[0][i] < 0)
CV_Assert(end < 0 || end != start); // if current step is negative, end < start is allowed.
else
CV_Assert(end < 0 || end > start); // End index is excluded.
sliceRanges[0][i].end = end; // We'll finalize a negative value later.
}
}
}
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
#ifdef HAVE_INF_ENGINE
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
return sliceRanges.size() == 1 && !hasSteps && neg_step_dims.empty();
#endif
#ifdef HAVE_CUDA
if (backendId == DNN_BACKEND_CUDA)
return !hasSteps && neg_step_dims.empty();
#endif
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CANN;
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() == 1);
MatShape inpShape = inputs[0];
std::vector<std::vector<int> > sliceSteps_ = sliceSteps;
std::vector<std::vector<cv::Range> > sliceRanges_ = sliceRanges;
if (hasSteps && !neg_step_dims.empty())
tranformForNegSteps(inpShape, sliceRanges_, sliceSteps_);
int axis_rw = axis;
std::vector<std::vector<cv::Range> > sliceRanges_rw = finalizeSliceRange(inpShape, axis_rw, sliceRanges_);
if (!sliceRanges_rw.empty())
{
outputs.resize(sliceRanges_rw.size(), inpShape);
for (int i = 0; i < outputs.size(); ++i)
{
CV_Assert(sliceRanges_rw[i].size() <= inpShape.size());
for (int j = 0; j < sliceRanges_rw[i].size(); ++j)
{
if (shapesInitialized || inpShape[j] > 0)
outputs[i][j] = normalizeRange(sliceRanges_rw[i][j], inpShape[j]).size();
if (!sliceSteps_.empty() && (i < sliceSteps_.size()) && (j < sliceSteps_[i].size()) && (sliceSteps_[i][j] > 1))
outputs[i][j] = (outputs[i][j] + sliceSteps_[i][j] - 1) / sliceSteps_[i][j];
}
}
}
else // Divide input blob on equal parts by axis.
{
CV_Assert(0 <= axis_rw && axis_rw < inpShape.size());
int splits = num_split ? num_split : requiredOutputs;
CV_Assert(splits > 0 && inpShape[axis_rw] % splits == 0);
inpShape[axis_rw] /= splits;
outputs.resize(splits, inpShape);
}
return false;
}
bool updateMemoryShapes(const std::vector<MatShape> &inputs) CV_OVERRIDE
{
shapesInitialized = true;
return true;
}
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
{
#ifdef HAVE_OPENCL
ocl_exec_cache.clear();
#endif
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
CV_Assert(inputs.size() == 1);
MatShape inpShape = shape(inputs[0]);
if (hasSteps && !neg_step_dims.empty())
tranformForNegSteps(inpShape, sliceRanges, sliceSteps);
finalSliceRanges = finalizeSliceRange(shape(inputs[0]), axis, sliceRanges);
if (sliceRanges.empty())
{
// Divide input blob on equal parts by axis.
int outAxisSize = inpShape[axis] / outputs.size();
finalSliceRanges.resize(outputs.size(),
std::vector<Range>(axis + 1, Range::all()));
int prevSlice = 0;
for (int i = 0; i < outputs.size(); ++i)
{
finalSliceRanges[i][axis].start = prevSlice;
finalSliceRanges[i][axis].end = finalSliceRanges[i][axis].start + outAxisSize;
prevSlice = finalSliceRanges[i][axis].end;
}
}
else
CV_Assert(outputs.size() == sliceRanges.size());
for (int i = 0; i < outputs.size(); ++i)
{
CV_Assert(finalSliceRanges[i].size() <= inpShape.size());
// Fill the rest of ranges.
for (int j = finalSliceRanges[i].size(); j < inpShape.size(); ++j)
{
finalSliceRanges[i].push_back(Range::all());
}
// Clamp.
for (int j = 0; j < finalSliceRanges[i].size(); ++j)
{
finalSliceRanges[i][j] = normalizeRange(finalSliceRanges[i][j], inpShape[j]);
}
}
if (!sliceSteps.empty() && sliceSteps[0].size() != inputs[0].dims)
sliceSteps[0].resize(inputs[0].dims, 1);
#if 0
std::cout << "DEBUG: DNN/Slice: " << outputs.size() << " inpShape=" << inpShape << std::endl;
for (int i = 0; i < outputs.size(); ++i)
{
for (int j = 0; j < finalSliceRanges[i].size(); ++j)
{
std::cout << finalSliceRanges[i][j];
}
std::cout << std::endl;
}
#endif
}
#ifdef HAVE_OPENCL
struct OpenCLExecInfo
{
std::string kernel_name;
std::string build_opts;
size_t local_size[2];
size_t global_size[2];
OpenCLExecInfo()
{
local_size[0] = local_size[1] = 0;
global_size[0] = global_size[1] = 0;
}
};
std::vector<OpenCLExecInfo> ocl_exec_cache;
void ocl_prepare(const std::vector<UMat>& inputs, const std::vector<UMat>& outputs)
{
CV_TRACE_FUNCTION();
CV_Assert(outputs.size() == finalSliceRanges.size());
ocl_exec_cache.resize(outputs.size());
const UMat& input = inputs[0];
const int dims = input.dims;
size_t WSZ = 128;
const int elemSize = (int)input.elemSize();
String opts0 = cv::format(
"-DDIMS=%d -DELEMSIZE=%d",
dims, elemSize
);
for (int d = 0; d < dims; d++)
{
opts0 += cv::format(" -DSRC_STEP_%d=%d", d, (int)input.step[dims - 1 - d]);
}
for (size_t i = 0; i < outputs.size(); i++)
{
OpenCLExecInfo& ocl = ocl_exec_cache[i];
const UMat& output = outputs[i];
const std::vector<Range>& range = finalSliceRanges[i];
String opts = opts0;
CV_CheckEQ(output.dims, dims, "");
for (int d = 0; d < dims; d++)
{
opts += cv::format(" -DDST_STEP_%d=%d -DDST_SZ_%d=%d -DSRC_START_%d=%d",
d, (int)output.step[dims - 1 - d],
d, (int)output.size[dims - 1 - d],
d, (int)range[dims - 1 - d].start
);
CV_CheckEQ(range[d].size(), (int)output.size[d], "");
}
const size_t param_LIMIT_BLOCK_SIZE_PER_WG = WSZ * 64;
int block_dims = 0;
size_t block_size = elemSize;
for (int i = dims - 1; i >= 0; --i)
{
if (input.step[i] != output.step[i])
break;
block_size *= output.size[i];
block_dims++;
if (block_size >= param_LIMIT_BLOCK_SIZE_PER_WG)
break;
}
const size_t total = output.total() * elemSize;
size_t num_blocks = total / block_size;
if ((num_blocks <= 8 && block_size >= WSZ * 4) || (block_size >= param_LIMIT_BLOCK_SIZE_PER_WG))
{
// use 1D copy mode
opts += cv::format(" -DUSE_COPY_1D=1");
opts += cv::format(" -DBLOCK_DIMS=%d", block_dims);
opts += cv::format(" -DBLOCK_DIMS_CONTIGUOUS=%d", block_dims);
opts += cv::format(" -DBLOCK_SIZE=%d", (int)block_size);
opts += cv::format(" -DBLOCK_COLS=%d", (int)block_size);
}
else
{
// use 2D copy mode
int block_cols = block_size;
int block_dims_contiguous = block_dims;
size_t input_base_step = input.step[dims - 1 - block_dims_contiguous];
size_t output_base_step = output.step[dims - 1 - block_dims_contiguous];
size_t block_rows = 1;
for (int i = dims - 1 - block_dims_contiguous; i >= 0; --i)
{
if (input.step[i] * output_base_step != output.step[i] * input_base_step)
break;
block_rows *= output.size[i];
block_dims++;
}
block_size *= block_rows;
num_blocks = total / block_size;
if (block_rows > 1)
{
opts += cv::format(" -DBLOCK_DIMS=%d", block_dims);
opts += cv::format(" -DBLOCK_DIMS_CONTIGUOUS=%d", block_dims_contiguous);
opts += cv::format(" -DBLOCK_SIZE=%d", (int)block_size);
opts += cv::format(" -DBLOCK_COLS=%d", (int)block_cols);
opts += cv::format(" -DBLOCK_ROWS=%d", (int)block_rows);
opts += cv::format(" -DBLOCK_SRC_STRIDE=%d", (int)input_base_step);
}
else
{
// use 1D copy mode
opts += cv::format(" -DUSE_COPY_1D=1");
opts += cv::format(" -DBLOCK_DIMS=%d", block_dims_contiguous);
opts += cv::format(" -DBLOCK_DIMS_CONTIGUOUS=%d", block_dims_contiguous);
opts += cv::format(" -DBLOCK_SIZE=%d", (int)block_size);
opts += cv::format(" -DBLOCK_COLS=%d", (int)block_size);
}
}
const size_t MIN_WORK_ITEMS = 16;
if (block_size <= 4 * MIN_WORK_ITEMS)
WSZ = 4;
else if (block_size <= 8 * MIN_WORK_ITEMS)
WSZ = 8;
else if (block_size <= 16 * MIN_WORK_ITEMS)
WSZ = 16;
else if (block_size <= 32 * MIN_WORK_ITEMS)
WSZ = 32;
else if (block_size <= 64 * MIN_WORK_ITEMS)
WSZ = 64;
opts += cv::format(" -DWSZ=%d", (int)WSZ);
std::ostringstream kernel_suffix;
kernel_suffix << dims << 'x' << elemSize << "_bsz" << block_size;
kernel_suffix << "__src_";
for (int d = 0; d < dims; d++)
{
kernel_suffix << input.size[dims - 1 - d] << '_';
}
kernel_suffix << '_';
/*for (int d = 0; d < dims; d++)
{
kernel_suffix << input.step[dims - 1 - d] << '_';
}
kernel_suffix << '_';*/
kernel_suffix << "dst_";
for (int d = 0; d < dims; d++)
{
kernel_suffix << output.size[dims - 1 - d] << '_';
}
/*kernel_suffix << '_';
for (int d = 0; d < dims; d++)
{
kernel_suffix << output.step[dims - 1 - d] << '_';
}*/
kernel_suffix << "_slice_";
for (int d = 0; d < dims; d++)
{
kernel_suffix << range[dims - 1 - d].start << '_';
}
for (int d = 0; d < dims; d++)
{
kernel_suffix << '_' << range[dims - 1 - d].end;
}
std::string kernel_suffix_str = kernel_suffix.str();
opts += cv::format(" -DSLICE_KERNEL_SUFFIX=%s", kernel_suffix_str.c_str());
ocl.kernel_name = cv::format("slice_%s", kernel_suffix_str.c_str());
ocl.build_opts = opts;
ocl.local_size[0] = WSZ;
ocl.local_size[1] = 1;
ocl.global_size[0] = WSZ;
ocl.global_size[1] = num_blocks;
} // for outputs.size()
} // ocl_prepare
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
{
CV_TRACE_FUNCTION();
if (hasSteps)
return false; // TODO not implemented yet: https://github.com/opencv/opencv/pull/19546
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inputs_.getUMatVector(inputs);
outputs_.getUMatVector(outputs);
CV_Assert(outputs.size() == finalSliceRanges.size());
const UMat& input = inputs[0];
const int dims = input.dims;
if (dims > 5)
{
CV_LOG_INFO(NULL, "DNN/OpenCL/Slice: implementation doesn't support dims=" << dims << ". Fallback to CPU");
return false;
}
if (ocl_exec_cache.empty())
{
ocl_prepare(inputs, outputs);
}
CV_CheckEQ(ocl_exec_cache.size(), outputs.size(), "");
for (size_t i = 0; i < outputs.size(); i++)
{
const OpenCLExecInfo& ocl = ocl_exec_cache[i];
UMat& output = outputs[i];
ocl::Kernel kernel(ocl.kernel_name.c_str(), ocl::dnn::slice_oclsrc, ocl.build_opts);
if (kernel.empty())
return false;
bool ret = kernel.args(
ocl::KernelArg::PtrReadOnly(input),
ocl::KernelArg::PtrWriteOnly(output)
)
.run_(2, (size_t*)ocl.global_size, (size_t*)ocl.local_size, false);
if (!ret)
return false;
} // for outputs.size()
return true;
} // forward_ocl
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
const Mat& inpMat = inputs[0];
CV_Assert(outputs.size() == finalSliceRanges.size());
if (!hasSteps)
{
for (size_t i = 0; i < outputs.size(); i++)
{
inpMat(finalSliceRanges[i]).copyTo(outputs[i]);
}
}
else
{
int dimsNum = inpMat.dims;
for (size_t i = 0; i < outputs.size(); i++)
{
std::vector<int> inpIdx(dimsNum, 0);
std::vector<int> outIdx(dimsNum, 0);
if (inpMat.type() == CV_16S)
getSliceRecursive<int16_t>(inpMat, inpIdx, finalSliceRanges[i], sliceSteps[i], 0, dimsNum, outputs[i], outIdx);
else if (inpMat.type() == CV_8S)
getSliceRecursive<int8_t>(inpMat, inpIdx, finalSliceRanges[i], sliceSteps[i], 0, dimsNum, outputs[i], outIdx);
else
getSliceRecursive<float>(inpMat, inpIdx, finalSliceRanges[i], sliceSteps[i], 0, dimsNum, outputs[i], outIdx);
// flip for negative steps
flip(outputs[i]);
}
}
}
#ifdef HAVE_CANN
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendWrapper> > &outputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
bool isSplit = sliceRanges.size() > 1;
auto x = inputs[0].dynamicCast<CannBackendWrapper>();
if (isSplit)
{
// create operator
auto op = std::make_shared<ge::op::SplitV>(name);
// set attr
int n_split = static_cast<int>(sliceRanges[0].size());
op->set_attr_num_split(n_split);
// set inputs
// set inputs : x
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
op->set_input_x_by_name(*op_x, x->name.c_str());
auto desc_x = x->getTensorDesc();
op->update_input_desc_x(*desc_x);
// set inputs : size_splits
std::vector<int> size_splits(n_split);
int cnt_split = 0;
for (size_t i = 0; i < sliceRanges.size() - 1; ++i)
{
auto target_range = sliceRanges[i].back();
size_splits[i] = target_range.end - target_range.start;
cnt_split += size_splits[i];
}
auto shape_x = desc_x->GetShape().GetDims();
CV_CheckGT(shape_x[axis], cnt_split, "DNN/CANN: invalid splits");
size_splits[n_split - 1] = shape_x[axis] - cnt_split;
std::vector<int> shape_size_splits{(int)size_splits.size()};
Mat size_splits_mat(shape_size_splits, CV_32S, size_splits.data());
auto op_const_size_splits = std::make_shared<CannConstOp>(size_splits_mat.data, size_splits_mat.type(), shape_size_splits, cv::format("%s_size_splits", name.c_str()));
op->set_input_size_splits(*(op_const_size_splits->getOp()));
op->update_input_desc_size_splits(*(op_const_size_splits->getTensorDesc()));
// set inputs : split_dim
Mat split_dim_mat(1, 1, CV_32S, Scalar(axis));
std::vector<int> split_dim_shape{1};
auto op_const_split_dim = std::make_shared<CannConstOp>(split_dim_mat.data, split_dim_mat.type(), split_dim_shape, cv::format("%s_split_dim", name.c_str()));
op->set_input_split_dim(*(op_const_split_dim->getOp()));
op->update_input_desc_split_dim(*(op_const_split_dim->getTensorDesc()));
// set outputs
op->create_dynamic_output_y(n_split);
for (uint32_t i = 0; i < n_split; ++i)
{
auto desc_output_y_i = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
op->update_dynamic_output_desc_y(i, *desc_output_y_i);
}
return Ptr<BackendNode>(new CannBackendNode(op));
}
// ONNX-Slice
CV_CheckEQ(sliceRanges.size(), (size_t)1, "");
if (hasSteps)
{
CV_CheckEQ(sliceSteps.size(), (size_t)1, "DNN/CANN/Slice: no support to multiple slices");
CV_CheckEQ(sliceRanges[0].size(), sliceSteps[0].size(), "DNN/CANN/Slice: number of slice ranges does not match number of slice steps");
}
const int dims = x->host->dims;
// create operator
auto op = std::make_shared<ge::op::StridedSliceV2>(name);
// retrieve begins, ends, axes and steps
std::vector<int> begins, ends, axes, steps;
for (int i = 0; i < sliceRanges[0].size(); i++)
{
begins.push_back(sliceRanges[0][i].start);
ends.push_back(sliceRanges[0][i].end);
axes.push_back(i);
if (hasSteps)
steps.push_back(sliceSteps[0][i]);
else
steps.push_back(1); // put 1 by default
}
std::vector<int> shape_{dims};
// set inputs
// set inputs : x
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
op->set_input_x_by_name(*op_x, x->name.c_str());
auto x_desc = x->getTensorDesc();
op->update_input_desc_x(*x_desc);
// set inputs : begin
Mat begin_mat(shape_, CV_32S, &begins[0]);
auto op_const_begin = std::make_shared<CannConstOp>(begin_mat.data, begin_mat.type(), shape_, cv::format("%s_begin", name.c_str()));
op->set_input_begin(*(op_const_begin->getOp()));
op->update_input_desc_begin(*(op_const_begin->getTensorDesc()));
// set inputs : end
Mat end_mat(shape_, CV_32S, &ends[0]);
auto op_const_end = std::make_shared<CannConstOp>(end_mat.data, end_mat.type(), shape_, cv::format("%s_end", name.c_str()));
op->set_input_end(*(op_const_end->getOp()));
op->update_input_desc_end(*(op_const_end->getTensorDesc()));
// set inputs : axes
Mat axes_mat(shape_, CV_32S, &axes[0]);
auto op_const_axes = std::make_shared<CannConstOp>(axes_mat.data, axes_mat.type(), shape_, cv::format("%s_axes", name.c_str()));
op->set_input_axes(*(op_const_axes->getOp()));
op->update_input_desc_axes(*(op_const_axes->getTensorDesc()));
// set inputs : strides
Mat strides_mat(shape_, CV_32S, &steps[0]);
auto op_const_strides = std::make_shared<CannConstOp>(strides_mat.data, strides_mat.type(), shape_, cv::format("%s_strides", name.c_str()));
op->set_input_strides(*(op_const_strides->getOp()));
op->update_input_desc_strides(*(op_const_strides->getTensorDesc()));
// set outputs
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
op->update_output_desc_y(*output_desc);
return Ptr<BackendNode>(new CannBackendNode(op));
}
#endif
#ifdef HAVE_DNN_NGRAPH
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
CV_Assert_N(nodes.size() <= 2);
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
CV_Assert(finalSliceRanges[0].size() == ieInpNode.get_shape().size());
std::vector<int64_t> offsets, dims;
for (int i = 0; i < finalSliceRanges[0].size(); ++i)
{
offsets.push_back(finalSliceRanges[0][i].start);
dims.push_back(finalSliceRanges[0][i].end);
}
auto lower_bounds = std::make_shared<ngraph::op::Constant>(ngraph::element::i64,
ngraph::Shape{offsets.size()}, offsets.data());
auto upper_bounds = std::make_shared<ngraph::op::Constant>(ngraph::element::i64,
ngraph::Shape{dims.size()}, dims.data());
auto strides = std::make_shared<ngraph::op::Constant>(ngraph::element::i64,
ngraph::Shape{dims.size()}, std::vector<int64_t>((int64_t)dims.size(), 1));
auto slice = std::make_shared<ngraph::op::v1::StridedSlice>(ieInpNode,
lower_bounds, upper_bounds, strides, std::vector<int64_t>{}, std::vector<int64_t>{});
return Ptr<BackendNode>(new InfEngineNgraphNode(slice));
}
#endif // HAVE_DNN_NGRAPH
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(
void *context_,
const std::vector<Ptr<BackendWrapper>>& inputs,
const std::vector<Ptr<BackendWrapper>>& outputs
) override
{
auto context = reinterpret_cast<csl::CSLContext*>(context_);
std::vector<std::vector<std::size_t>> offsets;
for (const auto& ranges : finalSliceRanges)
{
std::vector<std::size_t> offsets_i;
for (const auto& range : ranges)
offsets_i.push_back(range.start);
offsets.push_back(std::move(offsets_i));
}
return make_cuda_node<cuda4dnn::SliceOp>(preferableTarget, std::move(context->stream), std::move(offsets));
}
#endif
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE
{
const int numOutputs = scales[1].size();
for (int i = 0; i < numOutputs; i++)
{
if (scales[1][i] != scales[0][0])
return false;
}
return true;
}
private:
template <typename T>
void getSliceRecursive(const Mat &inpMat, std::vector<int> &inpIdx,
const std::vector<Range> &sliceRanges,
const std::vector<int> &sliceSteps, int dim, int dimsNum,
Mat &outputs, std::vector<int> &outIdx)
{
int begin = sliceRanges[dim].start;
int end = sliceRanges[dim].end;
int step = !sliceSteps.empty() ? sliceSteps[dim] : 1;
// TODO optimization is required (for 2D tail case at least)
for (int k = begin, j = 0; k < end; k += step, j++)
{
inpIdx[dim] = k;
outIdx[dim] = j;
if (dim + 1 < dimsNum)
getSliceRecursive<T>(inpMat, inpIdx, sliceRanges, sliceSteps, dim + 1, dimsNum, outputs, outIdx);
else
outputs.at<T>(outIdx.data()) = inpMat.at<T>(inpIdx.data());
}
}
void flip(Mat& output) // break if 1d tensor?
{
for (int i = 0; i < neg_step_dims.size(); ++i)
cv::flipND(output, output, neg_step_dims[i]);
}
protected:
// The actual non-negative values determined from @p sliceRanges depends on input size.
std::vector<std::vector<Range> > finalSliceRanges;
std::vector<int> neg_step_dims;
bool hasDynamicShapes;
bool shapesInitialized;
bool hasSteps;
};
class CropLayerImpl CV_FINAL : public SliceLayerImpl
{
public:
CropLayerImpl(const LayerParams& params) : SliceLayerImpl(LayerParams())
{
setParamsFrom(params);
axis = params.get<int>("axis", 2);
const DictValue *paramOffset = params.ptr("offset");
if (paramOffset)
{
for (int i = 0; i < paramOffset->size(); i++)
offset.push_back(paramOffset->get<int>(i));
}
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() == 2);
MatShape dstShape = inputs[0];
int start = normalize_axis(axis, dstShape);
for (int i = start; i < dstShape.size(); i++)
{
dstShape[i] = inputs[1][i];
}
outputs.resize(1, dstShape);
return false;
}
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays) CV_OVERRIDE
{
std::vector<Mat> inputs;
inputs_arr.getMatVector(inputs);
CV_Assert(2 == inputs.size());
const Mat &inpBlob = inputs[0];
const Mat &inpSzBlob = inputs[1];
int dims = inpBlob.dims;
int start_axis = normalize_axis(axis, dims);
std::vector<int> offset_final(dims, 0);
if (offset.size() == 1)
{
for (int i = start_axis; i < dims; i++)
offset_final[i] = offset[0];
}
else if (offset.size() > 1)
{
if ((int)offset.size() != dims - start_axis)
CV_Error(Error::StsBadArg, "number of offset values specified must be "
"equal to the number of dimensions following axis.");
for (int i = start_axis; i < dims; i++)
offset_final[i] = offset[i - start_axis];
}
finalSliceRanges.resize(1);
finalSliceRanges[0].resize(dims);
for (int i = 0; i < start_axis; i++)
{
finalSliceRanges[0][i] = Range(0, inpBlob.size[i]);
}
for (int i = start_axis; i < dims; i++)
{
if (offset_final[i] < 0 || offset_final[i] + inpSzBlob.size[i] > inpBlob.size[i])
CV_Error(Error::StsBadArg, "invalid crop parameters or blob sizes");
finalSliceRanges[0][i] = Range(offset_final[i], offset_final[i] + inpSzBlob.size[i]);
}
}
private:
std::vector<int> offset;
};
Ptr<SliceLayer> SliceLayer::create(const LayerParams& params)
{
return Ptr<SliceLayer>(new SliceLayerImpl(params));
}
Ptr<Layer> CropLayer::create(const LayerParams& params)
{
return Ptr<Layer>(new CropLayerImpl(params));
}
}
}