mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
196 lines
9.2 KiB
196 lines
9.2 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::gpu; |
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) |
|
|
|
void cv::gpu::bilateralFilter(const GpuMat&, GpuMat&, int, float, float, int, Stream&) { throw_nogpu(); } |
|
void cv::gpu::nonLocalMeans(const GpuMat&, GpuMat&, float, int, int, int, Stream&) { throw_nogpu(); } |
|
|
|
void cv::gpu::FastNonLocalMeansDenoising::simpleMethod(const GpuMat&, GpuMat&, float, int, int, Stream&) { throw_nogpu(); } |
|
void cv::gpu::FastNonLocalMeansDenoising::labMethod( const GpuMat&, GpuMat&, float, float, int, int, Stream&) { throw_nogpu(); } |
|
|
|
|
|
#else |
|
|
|
////////////////////////////////////////////////////////////////////////////////// |
|
//// Non Local Means Denosing (brute force) |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace imgproc |
|
{ |
|
template<typename T> |
|
void bilateral_filter_gpu(const PtrStepSzb& src, PtrStepSzb dst, int kernel_size, float sigma_spatial, float sigma_color, int borderMode, cudaStream_t stream); |
|
|
|
template<typename T> |
|
void nlm_bruteforce_gpu(const PtrStepSzb& src, PtrStepSzb dst, int search_radius, int block_radius, float h, int borderMode, cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
void cv::gpu::bilateralFilter(const GpuMat& src, GpuMat& dst, int kernel_size, float sigma_color, float sigma_spatial, int borderMode, Stream& s) |
|
{ |
|
using cv::gpu::device::imgproc::bilateral_filter_gpu; |
|
|
|
typedef void (*func_t)(const PtrStepSzb& src, PtrStepSzb dst, int kernel_size, float sigma_spatial, float sigma_color, int borderMode, cudaStream_t s); |
|
|
|
static const func_t funcs[6][4] = |
|
{ |
|
{bilateral_filter_gpu<uchar> , 0 /*bilateral_filter_gpu<uchar2>*/ , bilateral_filter_gpu<uchar3> , bilateral_filter_gpu<uchar4> }, |
|
{0 /*bilateral_filter_gpu<schar>*/, 0 /*bilateral_filter_gpu<schar2>*/ , 0 /*bilateral_filter_gpu<schar3>*/, 0 /*bilateral_filter_gpu<schar4>*/}, |
|
{bilateral_filter_gpu<ushort> , 0 /*bilateral_filter_gpu<ushort2>*/, bilateral_filter_gpu<ushort3> , bilateral_filter_gpu<ushort4> }, |
|
{bilateral_filter_gpu<short> , 0 /*bilateral_filter_gpu<short2>*/ , bilateral_filter_gpu<short3> , bilateral_filter_gpu<short4> }, |
|
{0 /*bilateral_filter_gpu<int>*/ , 0 /*bilateral_filter_gpu<int2>*/ , 0 /*bilateral_filter_gpu<int3>*/ , 0 /*bilateral_filter_gpu<int4>*/ }, |
|
{bilateral_filter_gpu<float> , 0 /*bilateral_filter_gpu<float2>*/ , bilateral_filter_gpu<float3> , bilateral_filter_gpu<float4> } |
|
}; |
|
|
|
sigma_color = (sigma_color <= 0 ) ? 1 : sigma_color; |
|
sigma_spatial = (sigma_spatial <= 0 ) ? 1 : sigma_spatial; |
|
|
|
|
|
int radius = (kernel_size <= 0) ? cvRound(sigma_spatial*1.5) : kernel_size/2; |
|
kernel_size = std::max(radius, 1)*2 + 1; |
|
|
|
CV_Assert(src.depth() <= CV_32F && src.channels() <= 4); |
|
const func_t func = funcs[src.depth()][src.channels() - 1]; |
|
CV_Assert(func != 0); |
|
|
|
CV_Assert(borderMode == BORDER_REFLECT101 || borderMode == BORDER_REPLICATE || borderMode == BORDER_CONSTANT || borderMode == BORDER_REFLECT || borderMode == BORDER_WRAP); |
|
|
|
int gpuBorderType; |
|
CV_Assert(tryConvertToGpuBorderType(borderMode, gpuBorderType)); |
|
|
|
dst.create(src.size(), src.type()); |
|
func(src, dst, kernel_size, sigma_spatial, sigma_color, gpuBorderType, StreamAccessor::getStream(s)); |
|
} |
|
|
|
void cv::gpu::nonLocalMeans(const GpuMat& src, GpuMat& dst, float h, int search_window, int block_window, int borderMode, Stream& s) |
|
{ |
|
using cv::gpu::device::imgproc::nlm_bruteforce_gpu; |
|
typedef void (*func_t)(const PtrStepSzb& src, PtrStepSzb dst, int search_radius, int block_radius, float h, int borderMode, cudaStream_t stream); |
|
|
|
static const func_t funcs[4] = { nlm_bruteforce_gpu<uchar>, nlm_bruteforce_gpu<uchar2>, nlm_bruteforce_gpu<uchar3>, 0/*nlm_bruteforce_gpu<uchar4>,*/ }; |
|
|
|
CV_Assert(src.type() == CV_8U || src.type() == CV_8UC2 || src.type() == CV_8UC3); |
|
|
|
const func_t func = funcs[src.channels() - 1]; |
|
CV_Assert(func != 0); |
|
|
|
int b = borderMode; |
|
CV_Assert(b == BORDER_REFLECT101 || b == BORDER_REPLICATE || b == BORDER_CONSTANT || b == BORDER_REFLECT || b == BORDER_WRAP); |
|
|
|
int gpuBorderType; |
|
CV_Assert(tryConvertToGpuBorderType(borderMode, gpuBorderType)); |
|
|
|
dst.create(src.size(), src.type()); |
|
func(src, dst, search_window/2, block_window/2, h, gpuBorderType, StreamAccessor::getStream(s)); |
|
} |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////// |
|
//// Non Local Means Denosing (fast approxinate) |
|
|
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace imgproc |
|
{ |
|
void nln_fast_get_buffer_size(const PtrStepSzb& src, int search_window, int block_window, int& buffer_cols, int& buffer_rows); |
|
|
|
template<typename T> |
|
void nlm_fast_gpu(const PtrStepSzb& src, PtrStepSzb dst, PtrStepi buffer, |
|
int search_window, int block_window, float h, cudaStream_t stream); |
|
|
|
void fnlm_split_channels(const PtrStepSz<uchar3>& lab, PtrStepb l, PtrStep<uchar2> ab, cudaStream_t stream); |
|
void fnlm_merge_channels(const PtrStepb& l, const PtrStep<uchar2>& ab, PtrStepSz<uchar3> lab, cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
void cv::gpu::FastNonLocalMeansDenoising::simpleMethod(const GpuMat& src, GpuMat& dst, float h, int search_window, int block_window, Stream& s) |
|
{ |
|
CV_Assert(src.depth() == CV_8U && src.channels() < 4); |
|
|
|
int border_size = search_window/2 + block_window/2; |
|
Size esize = src.size() + Size(border_size, border_size) * 2; |
|
|
|
cv::gpu::ensureSizeIsEnough(esize, CV_8UC3, extended_src_buffer); |
|
GpuMat extended_src(esize, src.type(), extended_src_buffer.ptr(), extended_src_buffer.step); |
|
|
|
cv::gpu::copyMakeBorder(src, extended_src, border_size, border_size, border_size, border_size, cv::BORDER_DEFAULT, Scalar(), s); |
|
GpuMat src_hdr = extended_src(Rect(Point2i(border_size, border_size), src.size())); |
|
|
|
int bcols, brows; |
|
device::imgproc::nln_fast_get_buffer_size(src_hdr, search_window, block_window, bcols, brows); |
|
buffer.create(brows, bcols, CV_32S); |
|
|
|
using namespace cv::gpu::device::imgproc; |
|
typedef void (*nlm_fast_t)(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float, cudaStream_t); |
|
static const nlm_fast_t funcs[] = { nlm_fast_gpu<uchar>, nlm_fast_gpu<uchar2>, nlm_fast_gpu<uchar3>, 0}; |
|
|
|
dst.create(src.size(), src.type()); |
|
funcs[src.channels()-1](src_hdr, dst, buffer, search_window, block_window, h, StreamAccessor::getStream(s)); |
|
} |
|
|
|
void cv::gpu::FastNonLocalMeansDenoising::labMethod( const GpuMat& src, GpuMat& dst, float h_luminance, float h_color, int search_window, int block_window, Stream& s) |
|
{ |
|
CV_Assert(src.type() == CV_8UC3); |
|
|
|
lab.create(src.size(), src.type()); |
|
cv::gpu::cvtColor(src, lab, CV_BGR2Lab, 0, s); |
|
|
|
l.create(src.size(), CV_8U); |
|
ab.create(src.size(), CV_8UC2); |
|
device::imgproc::fnlm_split_channels(lab, l, ab, StreamAccessor::getStream(s)); |
|
|
|
simpleMethod(l, l, h_luminance, search_window, block_window, s); |
|
simpleMethod(ab, ab, h_color, search_window, block_window, s); |
|
|
|
device::imgproc::fnlm_merge_channels(l, ab, lab, StreamAccessor::getStream(s)); |
|
cv::gpu::cvtColor(lab, dst, CV_Lab2BGR, 0, s); |
|
} |
|
|
|
|
|
#endif
|
|
|