mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
326 lines
12 KiB
326 lines
12 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_TEST_COMMON_HPP__ |
|
#define __OPENCV_TEST_COMMON_HPP__ |
|
|
|
#ifdef HAVE_OPENCL |
|
#include "opencv2/core/ocl.hpp" |
|
#endif |
|
|
|
namespace cv { namespace dnn { |
|
CV__DNN_INLINE_NS_BEGIN |
|
static inline void PrintTo(const cv::dnn::Backend& v, std::ostream* os) |
|
{ |
|
switch (v) { |
|
case DNN_BACKEND_DEFAULT: *os << "DEFAULT"; return; |
|
case DNN_BACKEND_HALIDE: *os << "HALIDE"; return; |
|
case DNN_BACKEND_INFERENCE_ENGINE: *os << "DLIE"; return; |
|
case DNN_BACKEND_OPENCV: *os << "OCV"; return; |
|
case DNN_BACKEND_VKCOM: *os << "VKCOM"; return; |
|
} // don't use "default:" to emit compiler warnings |
|
*os << "DNN_BACKEND_UNKNOWN(" << (int)v << ")"; |
|
} |
|
|
|
static inline void PrintTo(const cv::dnn::Target& v, std::ostream* os) |
|
{ |
|
switch (v) { |
|
case DNN_TARGET_CPU: *os << "CPU"; return; |
|
case DNN_TARGET_OPENCL: *os << "OCL"; return; |
|
case DNN_TARGET_OPENCL_FP16: *os << "OCL_FP16"; return; |
|
case DNN_TARGET_MYRIAD: *os << "MYRIAD"; return; |
|
case DNN_TARGET_VULKAN: *os << "VULKAN"; return; |
|
case DNN_TARGET_FPGA: *os << "FPGA"; return; |
|
} // don't use "default:" to emit compiler warnings |
|
*os << "DNN_TARGET_UNKNOWN(" << (int)v << ")"; |
|
} |
|
|
|
using opencv_test::tuple; |
|
using opencv_test::get; |
|
static inline void PrintTo(const tuple<cv::dnn::Backend, cv::dnn::Target> v, std::ostream* os) |
|
{ |
|
PrintTo(get<0>(v), os); |
|
*os << "/"; |
|
PrintTo(get<1>(v), os); |
|
} |
|
|
|
CV__DNN_INLINE_NS_END |
|
}} // namespace |
|
|
|
|
|
static inline const std::string &getOpenCVExtraDir() |
|
{ |
|
return cvtest::TS::ptr()->get_data_path(); |
|
} |
|
|
|
static inline void normAssert(cv::InputArray ref, cv::InputArray test, const char *comment = "", |
|
double l1 = 0.00001, double lInf = 0.0001) |
|
{ |
|
double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total(); |
|
EXPECT_LE(normL1, l1) << comment; |
|
|
|
double normInf = cvtest::norm(ref, test, cv::NORM_INF); |
|
EXPECT_LE(normInf, lInf) << comment; |
|
} |
|
|
|
static std::vector<cv::Rect2d> matToBoxes(const cv::Mat& m) |
|
{ |
|
EXPECT_EQ(m.type(), CV_32FC1); |
|
EXPECT_EQ(m.dims, 2); |
|
EXPECT_EQ(m.cols, 4); |
|
|
|
std::vector<cv::Rect2d> boxes(m.rows); |
|
for (int i = 0; i < m.rows; ++i) |
|
{ |
|
CV_Assert(m.row(i).isContinuous()); |
|
const float* data = m.ptr<float>(i); |
|
double l = data[0], t = data[1], r = data[2], b = data[3]; |
|
boxes[i] = cv::Rect2d(l, t, r - l, b - t); |
|
} |
|
return boxes; |
|
} |
|
|
|
static inline void normAssertDetections(const std::vector<int>& refClassIds, |
|
const std::vector<float>& refScores, |
|
const std::vector<cv::Rect2d>& refBoxes, |
|
const std::vector<int>& testClassIds, |
|
const std::vector<float>& testScores, |
|
const std::vector<cv::Rect2d>& testBoxes, |
|
const char *comment = "", double confThreshold = 0.0, |
|
double scores_diff = 1e-5, double boxes_iou_diff = 1e-4) |
|
{ |
|
std::vector<bool> matchedRefBoxes(refBoxes.size(), false); |
|
for (int i = 0; i < testBoxes.size(); ++i) |
|
{ |
|
double testScore = testScores[i]; |
|
if (testScore < confThreshold) |
|
continue; |
|
|
|
int testClassId = testClassIds[i]; |
|
const cv::Rect2d& testBox = testBoxes[i]; |
|
bool matched = false; |
|
for (int j = 0; j < refBoxes.size() && !matched; ++j) |
|
{ |
|
if (!matchedRefBoxes[j] && testClassId == refClassIds[j] && |
|
std::abs(testScore - refScores[j]) < scores_diff) |
|
{ |
|
double interArea = (testBox & refBoxes[j]).area(); |
|
double iou = interArea / (testBox.area() + refBoxes[j].area() - interArea); |
|
if (std::abs(iou - 1.0) < boxes_iou_diff) |
|
{ |
|
matched = true; |
|
matchedRefBoxes[j] = true; |
|
} |
|
} |
|
} |
|
if (!matched) |
|
std::cout << cv::format("Unmatched prediction: class %d score %f box ", |
|
testClassId, testScore) << testBox << std::endl; |
|
EXPECT_TRUE(matched) << comment; |
|
} |
|
|
|
// Check unmatched reference detections. |
|
for (int i = 0; i < refBoxes.size(); ++i) |
|
{ |
|
if (!matchedRefBoxes[i] && refScores[i] > confThreshold) |
|
{ |
|
std::cout << cv::format("Unmatched reference: class %d score %f box ", |
|
refClassIds[i], refScores[i]) << refBoxes[i] << std::endl; |
|
EXPECT_LE(refScores[i], confThreshold) << comment; |
|
} |
|
} |
|
} |
|
|
|
// For SSD-based object detection networks which produce output of shape 1x1xNx7 |
|
// where N is a number of detections and an every detection is represented by |
|
// a vector [batchId, classId, confidence, left, top, right, bottom]. |
|
static inline void normAssertDetections(cv::Mat ref, cv::Mat out, const char *comment = "", |
|
double confThreshold = 0.0, double scores_diff = 1e-5, |
|
double boxes_iou_diff = 1e-4) |
|
{ |
|
CV_Assert(ref.total() % 7 == 0); |
|
CV_Assert(out.total() % 7 == 0); |
|
ref = ref.reshape(1, ref.total() / 7); |
|
out = out.reshape(1, out.total() / 7); |
|
|
|
cv::Mat refClassIds, testClassIds; |
|
ref.col(1).convertTo(refClassIds, CV_32SC1); |
|
out.col(1).convertTo(testClassIds, CV_32SC1); |
|
std::vector<float> refScores(ref.col(2)), testScores(out.col(2)); |
|
std::vector<cv::Rect2d> refBoxes = matToBoxes(ref.colRange(3, 7)); |
|
std::vector<cv::Rect2d> testBoxes = matToBoxes(out.colRange(3, 7)); |
|
normAssertDetections(refClassIds, refScores, refBoxes, testClassIds, testScores, |
|
testBoxes, comment, confThreshold, scores_diff, boxes_iou_diff); |
|
} |
|
|
|
static inline bool readFileInMemory(const std::string& filename, std::string& content) |
|
{ |
|
std::ios::openmode mode = std::ios::in | std::ios::binary; |
|
std::ifstream ifs(filename.c_str(), mode); |
|
if (!ifs.is_open()) |
|
return false; |
|
|
|
content.clear(); |
|
|
|
ifs.seekg(0, std::ios::end); |
|
content.reserve(ifs.tellg()); |
|
ifs.seekg(0, std::ios::beg); |
|
|
|
content.assign((std::istreambuf_iterator<char>(ifs)), |
|
std::istreambuf_iterator<char>()); |
|
|
|
return true; |
|
} |
|
|
|
namespace opencv_test { |
|
|
|
using namespace cv::dnn; |
|
|
|
static inline |
|
testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargets( |
|
bool withInferenceEngine = true, |
|
bool withHalide = false, |
|
bool withCpuOCV = true, |
|
bool withVkCom = true |
|
) |
|
{ |
|
std::vector< tuple<Backend, Target> > targets; |
|
std::vector< Target > available; |
|
if (withHalide) |
|
{ |
|
available = getAvailableTargets(DNN_BACKEND_HALIDE); |
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i) |
|
targets.push_back(make_tuple(DNN_BACKEND_HALIDE, *i)); |
|
} |
|
if (withInferenceEngine) |
|
{ |
|
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE); |
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i) |
|
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE, *i)); |
|
} |
|
{ |
|
available = getAvailableTargets(DNN_BACKEND_OPENCV); |
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i) |
|
{ |
|
if (!withCpuOCV && *i == DNN_TARGET_CPU) |
|
continue; |
|
targets.push_back(make_tuple(DNN_BACKEND_OPENCV, *i)); |
|
} |
|
} |
|
if (targets.empty()) // validate at least CPU mode |
|
targets.push_back(make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)); |
|
return testing::ValuesIn(targets); |
|
} |
|
|
|
} // namespace |
|
|
|
|
|
namespace opencv_test { |
|
using namespace cv::dnn; |
|
|
|
class DNNTestLayer : public TestWithParam<tuple<Backend, Target> > |
|
{ |
|
public: |
|
dnn::Backend backend; |
|
dnn::Target target; |
|
double default_l1, default_lInf; |
|
|
|
DNNTestLayer() |
|
{ |
|
backend = (dnn::Backend)(int)get<0>(GetParam()); |
|
target = (dnn::Target)(int)get<1>(GetParam()); |
|
getDefaultThresholds(backend, target, &default_l1, &default_lInf); |
|
} |
|
|
|
static void getDefaultThresholds(int backend, int target, double* l1, double* lInf) |
|
{ |
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) |
|
{ |
|
*l1 = 4e-3; |
|
*lInf = 2e-2; |
|
} |
|
else |
|
{ |
|
*l1 = 1e-5; |
|
*lInf = 1e-4; |
|
} |
|
} |
|
|
|
static void checkBackend(int backend, int target, Mat* inp = 0, Mat* ref = 0) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) |
|
{ |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE < 2018030000 |
|
if (inp && ref && inp->size[0] != 1) |
|
{ |
|
// Myriad plugin supports only batch size 1. Slice a single sample. |
|
if (inp->size[0] == ref->size[0]) |
|
{ |
|
std::vector<cv::Range> range(inp->dims, Range::all()); |
|
range[0] = Range(0, 1); |
|
*inp = inp->operator()(range); |
|
|
|
range = std::vector<cv::Range>(ref->dims, Range::all()); |
|
range[0] = Range(0, 1); |
|
*ref = ref->operator()(range); |
|
} |
|
else |
|
throw SkipTestException("Myriad plugin supports only batch size 1"); |
|
} |
|
#else |
|
if (inp && ref && inp->dims == 4 && ref->dims == 4 && |
|
inp->size[0] != 1 && inp->size[0] != ref->size[0]) |
|
throw SkipTestException("Inconsistent batch size of input and output blobs for Myriad plugin"); |
|
|
|
#endif |
|
} |
|
} |
|
|
|
protected: |
|
void checkBackend(Mat* inp = 0, Mat* ref = 0) |
|
{ |
|
checkBackend(backend, target, inp, ref); |
|
} |
|
}; |
|
|
|
} // namespace |
|
|
|
#endif
|
|
|