mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
668 lines
20 KiB
668 lines
20 KiB
/* |
|
* jdphuff.c |
|
* |
|
* Copyright (C) 1995-1997, Thomas G. Lane. |
|
* This file is part of the Independent JPEG Group's software. |
|
* For conditions of distribution and use, see the accompanying README file. |
|
* |
|
* This file contains Huffman entropy decoding routines for progressive JPEG. |
|
* |
|
* Much of the complexity here has to do with supporting input suspension. |
|
* If the data source module demands suspension, we want to be able to back |
|
* up to the start of the current MCU. To do this, we copy state variables |
|
* into local working storage, and update them back to the permanent |
|
* storage only upon successful completion of an MCU. |
|
*/ |
|
|
|
#define JPEG_INTERNALS |
|
#include "jinclude.h" |
|
#include "jpeglib.h" |
|
#include "jdhuff.h" /* Declarations shared with jdhuff.c */ |
|
|
|
|
|
#ifdef D_PROGRESSIVE_SUPPORTED |
|
|
|
/* |
|
* Expanded entropy decoder object for progressive Huffman decoding. |
|
* |
|
* The savable_state subrecord contains fields that change within an MCU, |
|
* but must not be updated permanently until we complete the MCU. |
|
*/ |
|
|
|
typedef struct { |
|
unsigned int EOBRUN; /* remaining EOBs in EOBRUN */ |
|
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
|
} savable_state; |
|
|
|
/* This macro is to work around compilers with missing or broken |
|
* structure assignment. You'll need to fix this code if you have |
|
* such a compiler and you change MAX_COMPS_IN_SCAN. |
|
*/ |
|
|
|
#ifndef NO_STRUCT_ASSIGN |
|
#define ASSIGN_STATE(dest,src) ((dest) = (src)) |
|
#else |
|
#if MAX_COMPS_IN_SCAN == 4 |
|
#define ASSIGN_STATE(dest,src) \ |
|
((dest).EOBRUN = (src).EOBRUN, \ |
|
(dest).last_dc_val[0] = (src).last_dc_val[0], \ |
|
(dest).last_dc_val[1] = (src).last_dc_val[1], \ |
|
(dest).last_dc_val[2] = (src).last_dc_val[2], \ |
|
(dest).last_dc_val[3] = (src).last_dc_val[3]) |
|
#endif |
|
#endif |
|
|
|
|
|
typedef struct { |
|
struct jpeg_entropy_decoder pub; /* public fields */ |
|
|
|
/* These fields are loaded into local variables at start of each MCU. |
|
* In case of suspension, we exit WITHOUT updating them. |
|
*/ |
|
bitread_perm_state bitstate; /* Bit buffer at start of MCU */ |
|
savable_state saved; /* Other state at start of MCU */ |
|
|
|
/* These fields are NOT loaded into local working state. */ |
|
unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
|
|
|
/* Pointers to derived tables (these workspaces have image lifespan) */ |
|
d_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; |
|
|
|
d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */ |
|
} phuff_entropy_decoder; |
|
|
|
typedef phuff_entropy_decoder * phuff_entropy_ptr; |
|
|
|
/* Forward declarations */ |
|
METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo, |
|
JBLOCKROW *MCU_data)); |
|
METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo, |
|
JBLOCKROW *MCU_data)); |
|
METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo, |
|
JBLOCKROW *MCU_data)); |
|
METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo, |
|
JBLOCKROW *MCU_data)); |
|
|
|
|
|
/* |
|
* Initialize for a Huffman-compressed scan. |
|
*/ |
|
|
|
METHODDEF(void) |
|
start_pass_phuff_decoder (j_decompress_ptr cinfo) |
|
{ |
|
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
|
boolean is_DC_band, bad; |
|
int ci, coefi, tbl; |
|
int *coef_bit_ptr; |
|
jpeg_component_info * compptr; |
|
|
|
is_DC_band = (cinfo->Ss == 0); |
|
|
|
/* Validate scan parameters */ |
|
bad = FALSE; |
|
if (is_DC_band) { |
|
if (cinfo->Se != 0) |
|
bad = TRUE; |
|
} else { |
|
/* need not check Ss/Se < 0 since they came from unsigned bytes */ |
|
if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2) |
|
bad = TRUE; |
|
/* AC scans may have only one component */ |
|
if (cinfo->comps_in_scan != 1) |
|
bad = TRUE; |
|
} |
|
if (cinfo->Ah != 0) { |
|
/* Successive approximation refinement scan: must have Al = Ah-1. */ |
|
if (cinfo->Al != cinfo->Ah-1) |
|
bad = TRUE; |
|
} |
|
if (cinfo->Al > 13) /* need not check for < 0 */ |
|
bad = TRUE; |
|
/* Arguably the maximum Al value should be less than 13 for 8-bit precision, |
|
* but the spec doesn't say so, and we try to be liberal about what we |
|
* accept. Note: large Al values could result in out-of-range DC |
|
* coefficients during early scans, leading to bizarre displays due to |
|
* overflows in the IDCT math. But we won't crash. |
|
*/ |
|
if (bad) |
|
ERREXIT4(cinfo, JERR_BAD_PROGRESSION, |
|
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); |
|
/* Update progression status, and verify that scan order is legal. |
|
* Note that inter-scan inconsistencies are treated as warnings |
|
* not fatal errors ... not clear if this is right way to behave. |
|
*/ |
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
|
int cindex = cinfo->cur_comp_info[ci]->component_index; |
|
coef_bit_ptr = & cinfo->coef_bits[cindex][0]; |
|
if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ |
|
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); |
|
for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { |
|
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; |
|
if (cinfo->Ah != expected) |
|
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); |
|
coef_bit_ptr[coefi] = cinfo->Al; |
|
} |
|
} |
|
|
|
/* Select MCU decoding routine */ |
|
if (cinfo->Ah == 0) { |
|
if (is_DC_band) |
|
entropy->pub.decode_mcu = decode_mcu_DC_first; |
|
else |
|
entropy->pub.decode_mcu = decode_mcu_AC_first; |
|
} else { |
|
if (is_DC_band) |
|
entropy->pub.decode_mcu = decode_mcu_DC_refine; |
|
else |
|
entropy->pub.decode_mcu = decode_mcu_AC_refine; |
|
} |
|
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
|
compptr = cinfo->cur_comp_info[ci]; |
|
/* Make sure requested tables are present, and compute derived tables. |
|
* We may build same derived table more than once, but it's not expensive. |
|
*/ |
|
if (is_DC_band) { |
|
if (cinfo->Ah == 0) { /* DC refinement needs no table */ |
|
tbl = compptr->dc_tbl_no; |
|
jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, |
|
& entropy->derived_tbls[tbl]); |
|
} |
|
} else { |
|
tbl = compptr->ac_tbl_no; |
|
jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, |
|
& entropy->derived_tbls[tbl]); |
|
/* remember the single active table */ |
|
entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; |
|
} |
|
/* Initialize DC predictions to 0 */ |
|
entropy->saved.last_dc_val[ci] = 0; |
|
} |
|
|
|
/* Initialize bitread state variables */ |
|
entropy->bitstate.bits_left = 0; |
|
entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ |
|
entropy->pub.insufficient_data = FALSE; |
|
|
|
/* Initialize private state variables */ |
|
entropy->saved.EOBRUN = 0; |
|
|
|
/* Initialize restart counter */ |
|
entropy->restarts_to_go = cinfo->restart_interval; |
|
} |
|
|
|
|
|
/* |
|
* Figure F.12: extend sign bit. |
|
* On some machines, a shift and add will be faster than a table lookup. |
|
*/ |
|
|
|
#ifdef AVOID_TABLES |
|
|
|
#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x)) |
|
|
|
#else |
|
|
|
#define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) |
|
|
|
static const int extend_test[16] = /* entry n is 2**(n-1) */ |
|
{ 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, |
|
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; |
|
|
|
static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ |
|
{ 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, |
|
((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, |
|
((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, |
|
((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; |
|
|
|
#endif /* AVOID_TABLES */ |
|
|
|
|
|
/* |
|
* Check for a restart marker & resynchronize decoder. |
|
* Returns FALSE if must suspend. |
|
*/ |
|
|
|
LOCAL(boolean) |
|
process_restart (j_decompress_ptr cinfo) |
|
{ |
|
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
|
int ci; |
|
|
|
/* Throw away any unused bits remaining in bit buffer; */ |
|
/* include any full bytes in next_marker's count of discarded bytes */ |
|
cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; |
|
entropy->bitstate.bits_left = 0; |
|
|
|
/* Advance past the RSTn marker */ |
|
if (! (*cinfo->marker->read_restart_marker) (cinfo)) |
|
return FALSE; |
|
|
|
/* Re-initialize DC predictions to 0 */ |
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
|
entropy->saved.last_dc_val[ci] = 0; |
|
/* Re-init EOB run count, too */ |
|
entropy->saved.EOBRUN = 0; |
|
|
|
/* Reset restart counter */ |
|
entropy->restarts_to_go = cinfo->restart_interval; |
|
|
|
/* Reset out-of-data flag, unless read_restart_marker left us smack up |
|
* against a marker. In that case we will end up treating the next data |
|
* segment as empty, and we can avoid producing bogus output pixels by |
|
* leaving the flag set. |
|
*/ |
|
if (cinfo->unread_marker == 0) |
|
entropy->pub.insufficient_data = FALSE; |
|
|
|
return TRUE; |
|
} |
|
|
|
|
|
/* |
|
* Huffman MCU decoding. |
|
* Each of these routines decodes and returns one MCU's worth of |
|
* Huffman-compressed coefficients. |
|
* The coefficients are reordered from zigzag order into natural array order, |
|
* but are not dequantized. |
|
* |
|
* The i'th block of the MCU is stored into the block pointed to by |
|
* MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. |
|
* |
|
* We return FALSE if data source requested suspension. In that case no |
|
* changes have been made to permanent state. (Exception: some output |
|
* coefficients may already have been assigned. This is harmless for |
|
* spectral selection, since we'll just re-assign them on the next call. |
|
* Successive approximation AC refinement has to be more careful, however.) |
|
*/ |
|
|
|
/* |
|
* MCU decoding for DC initial scan (either spectral selection, |
|
* or first pass of successive approximation). |
|
*/ |
|
|
|
METHODDEF(boolean) |
|
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
|
{ |
|
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
|
int Al = cinfo->Al; |
|
register int s, r; |
|
int blkn, ci; |
|
JBLOCKROW block; |
|
BITREAD_STATE_VARS; |
|
savable_state state; |
|
d_derived_tbl * tbl; |
|
jpeg_component_info * compptr; |
|
|
|
/* Process restart marker if needed; may have to suspend */ |
|
if (cinfo->restart_interval) { |
|
if (entropy->restarts_to_go == 0) |
|
if (! process_restart(cinfo)) |
|
return FALSE; |
|
} |
|
|
|
/* If we've run out of data, just leave the MCU set to zeroes. |
|
* This way, we return uniform gray for the remainder of the segment. |
|
*/ |
|
if (! entropy->pub.insufficient_data) { |
|
|
|
/* Load up working state */ |
|
BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
|
ASSIGN_STATE(state, entropy->saved); |
|
|
|
/* Outer loop handles each block in the MCU */ |
|
|
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
|
block = MCU_data[blkn]; |
|
ci = cinfo->MCU_membership[blkn]; |
|
compptr = cinfo->cur_comp_info[ci]; |
|
tbl = entropy->derived_tbls[compptr->dc_tbl_no]; |
|
|
|
/* Decode a single block's worth of coefficients */ |
|
|
|
/* Section F.2.2.1: decode the DC coefficient difference */ |
|
HUFF_DECODE(s, br_state, tbl, return FALSE, label1); |
|
if (s) { |
|
CHECK_BIT_BUFFER(br_state, s, return FALSE); |
|
r = GET_BITS(s); |
|
s = HUFF_EXTEND(r, s); |
|
} |
|
|
|
/* Convert DC difference to actual value, update last_dc_val */ |
|
s += state.last_dc_val[ci]; |
|
state.last_dc_val[ci] = s; |
|
/* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ |
|
(*block)[0] = (JCOEF) (s << Al); |
|
} |
|
|
|
/* Completed MCU, so update state */ |
|
BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
|
ASSIGN_STATE(entropy->saved, state); |
|
} |
|
|
|
/* Account for restart interval (no-op if not using restarts) */ |
|
entropy->restarts_to_go--; |
|
|
|
return TRUE; |
|
} |
|
|
|
|
|
/* |
|
* MCU decoding for AC initial scan (either spectral selection, |
|
* or first pass of successive approximation). |
|
*/ |
|
|
|
METHODDEF(boolean) |
|
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
|
{ |
|
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
|
int Se = cinfo->Se; |
|
int Al = cinfo->Al; |
|
register int s, k, r; |
|
unsigned int EOBRUN; |
|
JBLOCKROW block; |
|
BITREAD_STATE_VARS; |
|
d_derived_tbl * tbl; |
|
|
|
/* Process restart marker if needed; may have to suspend */ |
|
if (cinfo->restart_interval) { |
|
if (entropy->restarts_to_go == 0) |
|
if (! process_restart(cinfo)) |
|
return FALSE; |
|
} |
|
|
|
/* If we've run out of data, just leave the MCU set to zeroes. |
|
* This way, we return uniform gray for the remainder of the segment. |
|
*/ |
|
if (! entropy->pub.insufficient_data) { |
|
|
|
/* Load up working state. |
|
* We can avoid loading/saving bitread state if in an EOB run. |
|
*/ |
|
EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ |
|
|
|
/* There is always only one block per MCU */ |
|
|
|
if (EOBRUN > 0) /* if it's a band of zeroes... */ |
|
EOBRUN--; /* ...process it now (we do nothing) */ |
|
else { |
|
BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
|
block = MCU_data[0]; |
|
tbl = entropy->ac_derived_tbl; |
|
|
|
for (k = cinfo->Ss; k <= Se; k++) { |
|
HUFF_DECODE(s, br_state, tbl, return FALSE, label2); |
|
r = s >> 4; |
|
s &= 15; |
|
if (s) { |
|
k += r; |
|
CHECK_BIT_BUFFER(br_state, s, return FALSE); |
|
r = GET_BITS(s); |
|
s = HUFF_EXTEND(r, s); |
|
/* Scale and output coefficient in natural (dezigzagged) order */ |
|
(*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al); |
|
} else { |
|
if (r == 15) { /* ZRL */ |
|
k += 15; /* skip 15 zeroes in band */ |
|
} else { /* EOBr, run length is 2^r + appended bits */ |
|
EOBRUN = 1 << r; |
|
if (r) { /* EOBr, r > 0 */ |
|
CHECK_BIT_BUFFER(br_state, r, return FALSE); |
|
r = GET_BITS(r); |
|
EOBRUN += r; |
|
} |
|
EOBRUN--; /* this band is processed at this moment */ |
|
break; /* force end-of-band */ |
|
} |
|
} |
|
} |
|
|
|
BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
|
} |
|
|
|
/* Completed MCU, so update state */ |
|
entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ |
|
} |
|
|
|
/* Account for restart interval (no-op if not using restarts) */ |
|
entropy->restarts_to_go--; |
|
|
|
return TRUE; |
|
} |
|
|
|
|
|
/* |
|
* MCU decoding for DC successive approximation refinement scan. |
|
* Note: we assume such scans can be multi-component, although the spec |
|
* is not very clear on the point. |
|
*/ |
|
|
|
METHODDEF(boolean) |
|
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
|
{ |
|
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
|
int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
|
int blkn; |
|
JBLOCKROW block; |
|
BITREAD_STATE_VARS; |
|
|
|
/* Process restart marker if needed; may have to suspend */ |
|
if (cinfo->restart_interval) { |
|
if (entropy->restarts_to_go == 0) |
|
if (! process_restart(cinfo)) |
|
return FALSE; |
|
} |
|
|
|
/* Not worth the cycles to check insufficient_data here, |
|
* since we will not change the data anyway if we read zeroes. |
|
*/ |
|
|
|
/* Load up working state */ |
|
BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
|
|
|
/* Outer loop handles each block in the MCU */ |
|
|
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
|
block = MCU_data[blkn]; |
|
|
|
/* Encoded data is simply the next bit of the two's-complement DC value */ |
|
CHECK_BIT_BUFFER(br_state, 1, return FALSE); |
|
if (GET_BITS(1)) |
|
(*block)[0] |= p1; |
|
/* Note: since we use |=, repeating the assignment later is safe */ |
|
} |
|
|
|
/* Completed MCU, so update state */ |
|
BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
|
|
|
/* Account for restart interval (no-op if not using restarts) */ |
|
entropy->restarts_to_go--; |
|
|
|
return TRUE; |
|
} |
|
|
|
|
|
/* |
|
* MCU decoding for AC successive approximation refinement scan. |
|
*/ |
|
|
|
METHODDEF(boolean) |
|
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
|
{ |
|
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
|
int Se = cinfo->Se; |
|
int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
|
int m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */ |
|
register int s, k, r; |
|
unsigned int EOBRUN; |
|
JBLOCKROW block; |
|
JCOEFPTR thiscoef; |
|
BITREAD_STATE_VARS; |
|
d_derived_tbl * tbl; |
|
int num_newnz; |
|
int newnz_pos[DCTSIZE2]; |
|
|
|
/* Process restart marker if needed; may have to suspend */ |
|
if (cinfo->restart_interval) { |
|
if (entropy->restarts_to_go == 0) |
|
if (! process_restart(cinfo)) |
|
return FALSE; |
|
} |
|
|
|
/* If we've run out of data, don't modify the MCU. |
|
*/ |
|
if (! entropy->pub.insufficient_data) { |
|
|
|
/* Load up working state */ |
|
BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
|
EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ |
|
|
|
/* There is always only one block per MCU */ |
|
block = MCU_data[0]; |
|
tbl = entropy->ac_derived_tbl; |
|
|
|
/* If we are forced to suspend, we must undo the assignments to any newly |
|
* nonzero coefficients in the block, because otherwise we'd get confused |
|
* next time about which coefficients were already nonzero. |
|
* But we need not undo addition of bits to already-nonzero coefficients; |
|
* instead, we can test the current bit to see if we already did it. |
|
*/ |
|
num_newnz = 0; |
|
|
|
/* initialize coefficient loop counter to start of band */ |
|
k = cinfo->Ss; |
|
|
|
if (EOBRUN == 0) { |
|
for (; k <= Se; k++) { |
|
HUFF_DECODE(s, br_state, tbl, goto undoit, label3); |
|
r = s >> 4; |
|
s &= 15; |
|
if (s) { |
|
if (s != 1) /* size of new coef should always be 1 */ |
|
WARNMS(cinfo, JWRN_HUFF_BAD_CODE); |
|
CHECK_BIT_BUFFER(br_state, 1, goto undoit); |
|
if (GET_BITS(1)) |
|
s = p1; /* newly nonzero coef is positive */ |
|
else |
|
s = m1; /* newly nonzero coef is negative */ |
|
} else { |
|
if (r != 15) { |
|
EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */ |
|
if (r) { |
|
CHECK_BIT_BUFFER(br_state, r, goto undoit); |
|
r = GET_BITS(r); |
|
EOBRUN += r; |
|
} |
|
break; /* rest of block is handled by EOB logic */ |
|
} |
|
/* note s = 0 for processing ZRL */ |
|
} |
|
/* Advance over already-nonzero coefs and r still-zero coefs, |
|
* appending correction bits to the nonzeroes. A correction bit is 1 |
|
* if the absolute value of the coefficient must be increased. |
|
*/ |
|
do { |
|
thiscoef = *block + jpeg_natural_order[k]; |
|
if (*thiscoef != 0) { |
|
CHECK_BIT_BUFFER(br_state, 1, goto undoit); |
|
if (GET_BITS(1)) { |
|
if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ |
|
if (*thiscoef >= 0) |
|
*thiscoef += p1; |
|
else |
|
*thiscoef += m1; |
|
} |
|
} |
|
} else { |
|
if (--r < 0) |
|
break; /* reached target zero coefficient */ |
|
} |
|
k++; |
|
} while (k <= Se); |
|
if (s) { |
|
int pos = jpeg_natural_order[k]; |
|
/* Output newly nonzero coefficient */ |
|
(*block)[pos] = (JCOEF) s; |
|
/* Remember its position in case we have to suspend */ |
|
newnz_pos[num_newnz++] = pos; |
|
} |
|
} |
|
} |
|
|
|
if (EOBRUN > 0) { |
|
/* Scan any remaining coefficient positions after the end-of-band |
|
* (the last newly nonzero coefficient, if any). Append a correction |
|
* bit to each already-nonzero coefficient. A correction bit is 1 |
|
* if the absolute value of the coefficient must be increased. |
|
*/ |
|
for (; k <= Se; k++) { |
|
thiscoef = *block + jpeg_natural_order[k]; |
|
if (*thiscoef != 0) { |
|
CHECK_BIT_BUFFER(br_state, 1, goto undoit); |
|
if (GET_BITS(1)) { |
|
if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ |
|
if (*thiscoef >= 0) |
|
*thiscoef += p1; |
|
else |
|
*thiscoef += m1; |
|
} |
|
} |
|
} |
|
} |
|
/* Count one block completed in EOB run */ |
|
EOBRUN--; |
|
} |
|
|
|
/* Completed MCU, so update state */ |
|
BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
|
entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ |
|
} |
|
|
|
/* Account for restart interval (no-op if not using restarts) */ |
|
entropy->restarts_to_go--; |
|
|
|
return TRUE; |
|
|
|
undoit: |
|
/* Re-zero any output coefficients that we made newly nonzero */ |
|
while (num_newnz > 0) |
|
(*block)[newnz_pos[--num_newnz]] = 0; |
|
|
|
return FALSE; |
|
} |
|
|
|
|
|
/* |
|
* Module initialization routine for progressive Huffman entropy decoding. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jinit_phuff_decoder (j_decompress_ptr cinfo) |
|
{ |
|
phuff_entropy_ptr entropy; |
|
int *coef_bit_ptr; |
|
int ci, i; |
|
|
|
entropy = (phuff_entropy_ptr) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
SIZEOF(phuff_entropy_decoder)); |
|
cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; |
|
entropy->pub.start_pass = start_pass_phuff_decoder; |
|
|
|
/* Mark derived tables unallocated */ |
|
for (i = 0; i < NUM_HUFF_TBLS; i++) { |
|
entropy->derived_tbls[i] = NULL; |
|
} |
|
|
|
/* Create progression status table */ |
|
cinfo->coef_bits = (int (*)[DCTSIZE2]) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
cinfo->num_components*DCTSIZE2*SIZEOF(int)); |
|
coef_bit_ptr = & cinfo->coef_bits[0][0]; |
|
for (ci = 0; ci < cinfo->num_components; ci++) |
|
for (i = 0; i < DCTSIZE2; i++) |
|
*coef_bit_ptr++ = -1; |
|
} |
|
|
|
#endif /* D_PROGRESSIVE_SUPPORTED */
|
|
|