mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
102 lines
2.7 KiB
102 lines
2.7 KiB
.. _feature_description: |
|
|
|
Feature Description |
|
******************* |
|
|
|
Goal |
|
===== |
|
|
|
In this tutorial you will learn how to: |
|
|
|
.. container:: enumeratevisibleitemswithsquare |
|
|
|
* Use the :descriptor_extractor:`DescriptorExtractor<>` interface in order to find the feature vector correspondent to the keypoints. Specifically: |
|
|
|
* Use :surf_descriptor_extractor:`SurfDescriptorExtractor<>` and its function :descriptor_extractor:`compute<>` to perform the required calculations. |
|
* Use a :brute_force_matcher:`BFMatcher<>` to match the features vector |
|
* Use the function :draw_matches:`drawMatches<>` to draw the detected matches. |
|
|
|
|
|
Theory |
|
====== |
|
|
|
Code |
|
==== |
|
|
|
This tutorial code's is shown lines below. You can also download it from `here <https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/features2D/SURF_descriptor.cpp>`_ |
|
|
|
.. code-block:: cpp |
|
|
|
#include <stdio.h> |
|
#include <iostream> |
|
#include "opencv2/core/core.hpp" |
|
#include "opencv2/features2d/features2d.hpp" |
|
#include "opencv2/highgui/highgui.hpp" |
|
#include "opencv2/nonfree/features2d.hpp" |
|
|
|
using namespace cv; |
|
|
|
void readme(); |
|
|
|
/** @function main */ |
|
int main( int argc, char** argv ) |
|
{ |
|
if( argc != 3 ) |
|
{ return -1; } |
|
|
|
Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE ); |
|
Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE ); |
|
|
|
if( !img_1.data || !img_2.data ) |
|
{ return -1; } |
|
|
|
//-- Step 1: Detect the keypoints using SURF Detector |
|
int minHessian = 400; |
|
|
|
SurfFeatureDetector detector( minHessian ); |
|
|
|
std::vector<KeyPoint> keypoints_1, keypoints_2; |
|
|
|
detector.detect( img_1, keypoints_1 ); |
|
detector.detect( img_2, keypoints_2 ); |
|
|
|
//-- Step 2: Calculate descriptors (feature vectors) |
|
SurfDescriptorExtractor extractor; |
|
|
|
Mat descriptors_1, descriptors_2; |
|
|
|
extractor.compute( img_1, keypoints_1, descriptors_1 ); |
|
extractor.compute( img_2, keypoints_2, descriptors_2 ); |
|
|
|
//-- Step 3: Matching descriptor vectors with a brute force matcher |
|
BFMatcher matcher(NORM_L2); |
|
std::vector< DMatch > matches; |
|
matcher.match( descriptors_1, descriptors_2, matches ); |
|
|
|
//-- Draw matches |
|
Mat img_matches; |
|
drawMatches( img_1, keypoints_1, img_2, keypoints_2, matches, img_matches ); |
|
|
|
//-- Show detected matches |
|
imshow("Matches", img_matches ); |
|
|
|
waitKey(0); |
|
|
|
return 0; |
|
} |
|
|
|
/** @function readme */ |
|
void readme() |
|
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; } |
|
|
|
Explanation |
|
============ |
|
|
|
Result |
|
====== |
|
|
|
#. Here is the result after applying the BruteForce matcher between the two original images: |
|
|
|
.. image:: images/Feature_Description_BruteForce_Result.jpg |
|
:align: center |
|
:height: 200pt
|
|
|