Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

411 lines
16 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_OBJDETECT_HPP__
#define __OPENCV_OBJDETECT_HPP__
#include "opencv2/core.hpp"
typedef struct CvLatentSvmDetector CvLatentSvmDetector;
typedef struct CvHaarClassifierCascade CvHaarClassifierCascade;
namespace cv
{
///////////////////////////// Object Detection ////////////////////////////
/*
* This is a class wrapping up the structure CvLatentSvmDetector and functions working with it.
* The class goals are:
* 1) provide c++ interface;
* 2) make it possible to load and detect more than one class (model) unlike CvLatentSvmDetector.
*/
class CV_EXPORTS LatentSvmDetector
{
public:
struct CV_EXPORTS ObjectDetection
{
ObjectDetection();
ObjectDetection( const Rect& rect, float score, int classID = -1 );
Rect rect;
float score;
int classID;
};
LatentSvmDetector();
LatentSvmDetector( const std::vector<String>& filenames, const std::vector<String>& classNames = std::vector<String>() );
virtual ~LatentSvmDetector();
virtual void clear();
virtual bool empty() const;
bool load( const std::vector<String>& filenames, const std::vector<String>& classNames = std::vector<String>() );
virtual void detect( const Mat& image,
std::vector<ObjectDetection>& objectDetections,
float overlapThreshold = 0.5f,
int numThreads = -1 );
const std::vector<String>& getClassNames() const;
size_t getClassCount() const;
private:
std::vector<CvLatentSvmDetector*> detectors;
std::vector<String> classNames;
};
CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps = 0.2);
CV_EXPORTS_W void groupRectangles(CV_IN_OUT std::vector<Rect>& rectList, CV_OUT std::vector<int>& weights, int groupThreshold, double eps = 0.2);
CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps, std::vector<int>* weights, std::vector<double>* levelWeights );
CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels,
std::vector<double>& levelWeights, int groupThreshold, double eps = 0.2);
CV_EXPORTS void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights, std::vector<double>& foundScales,
double detectThreshold = 0.0, Size winDetSize = Size(64, 128));
class CV_EXPORTS FeatureEvaluator
{
public:
enum { HAAR = 0,
LBP = 1,
HOG = 2
};
virtual ~FeatureEvaluator();
virtual bool read(const FileNode& node);
virtual Ptr<FeatureEvaluator> clone() const;
virtual int getFeatureType() const;
virtual bool setImage(const Mat& img, Size origWinSize);
virtual bool setWindow(Point p);
virtual double calcOrd(int featureIdx) const;
virtual int calcCat(int featureIdx) const;
static Ptr<FeatureEvaluator> create(int type);
};
template<> CV_EXPORTS void Ptr<CvHaarClassifierCascade>::delete_obj();
enum { CASCADE_DO_CANNY_PRUNING = 1,
CASCADE_SCALE_IMAGE = 2,
CASCADE_FIND_BIGGEST_OBJECT = 4,
CASCADE_DO_ROUGH_SEARCH = 8
};
class CV_EXPORTS_W CascadeClassifier
{
public:
CV_WRAP CascadeClassifier();
CV_WRAP CascadeClassifier( const String& filename );
virtual ~CascadeClassifier();
CV_WRAP virtual bool empty() const;
CV_WRAP bool load( const String& filename );
virtual bool read( const FileNode& node );
CV_WRAP virtual void detectMultiScale( const Mat& image,
CV_OUT std::vector<Rect>& objects,
double scaleFactor = 1.1,
int minNeighbors = 3, int flags = 0,
Size minSize = Size(),
Size maxSize = Size() );
CV_WRAP virtual void detectMultiScale( const Mat& image,
CV_OUT std::vector<Rect>& objects,
CV_OUT std::vector<int>& numDetections,
double scaleFactor=1.1,
int minNeighbors=3, int flags=0,
Size minSize=Size(),
Size maxSize=Size() );
CV_WRAP virtual void detectMultiScale( const Mat& image,
CV_OUT std::vector<Rect>& objects,
CV_OUT std::vector<int>& rejectLevels,
CV_OUT std::vector<double>& levelWeights,
double scaleFactor = 1.1,
int minNeighbors = 3, int flags = 0,
Size minSize = Size(),
Size maxSize = Size(),
bool outputRejectLevels = false );
bool isOldFormatCascade() const;
virtual Size getOriginalWindowSize() const;
int getFeatureType() const;
bool setImage( const Mat& );
protected:
virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
int stripSize, int yStep, double factor, std::vector<Rect>& candidates,
std::vector<int>& rejectLevels, std::vector<double>& levelWeights, bool outputRejectLevels = false );
virtual void detectMultiScaleNoGrouping( const Mat& image, std::vector<Rect>& candidates,
std::vector<int>& rejectLevels, std::vector<double>& levelWeights,
double scaleFactor, Size minObjectSize, Size maxObjectSize,
bool outputRejectLevels = false );
protected:
enum { BOOST = 0
};
enum { DO_CANNY_PRUNING = CASCADE_DO_CANNY_PRUNING,
SCALE_IMAGE = CASCADE_SCALE_IMAGE,
FIND_BIGGEST_OBJECT = CASCADE_FIND_BIGGEST_OBJECT,
DO_ROUGH_SEARCH = CASCADE_DO_ROUGH_SEARCH
};
friend class CascadeClassifierInvoker;
template<class FEval>
friend int predictOrdered( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
template<class FEval>
friend int predictCategorical( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
template<class FEval>
friend int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
template<class FEval>
friend int predictCategoricalStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
bool setImage( Ptr<FeatureEvaluator>& feval, const Mat& image);
virtual int runAt( Ptr<FeatureEvaluator>& feval, Point pt, double& weight );
class Data
{
public:
struct CV_EXPORTS DTreeNode
{
int featureIdx;
float threshold; // for ordered features only
int left;
int right;
};
struct CV_EXPORTS DTree
{
int nodeCount;
};
struct CV_EXPORTS Stage
{
int first;
int ntrees;
float threshold;
};
bool read(const FileNode &node);
bool isStumpBased;
int stageType;
int featureType;
int ncategories;
Size origWinSize;
std::vector<Stage> stages;
std::vector<DTree> classifiers;
std::vector<DTreeNode> nodes;
std::vector<float> leaves;
std::vector<int> subsets;
};
Data data;
Ptr<FeatureEvaluator> featureEvaluator;
Ptr<CvHaarClassifierCascade> oldCascade;
public:
class CV_EXPORTS MaskGenerator
{
public:
virtual ~MaskGenerator() {}
virtual cv::Mat generateMask(const cv::Mat& src)=0;
virtual void initializeMask(const cv::Mat& /*src*/) {};
};
void setMaskGenerator(Ptr<MaskGenerator> maskGenerator);
Ptr<MaskGenerator> getMaskGenerator();
void setFaceDetectionMaskGenerator();
protected:
Ptr<MaskGenerator> maskGenerator;
};
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
// struct for detection region of interest (ROI)
struct DetectionROI
{
// scale(size) of the bounding box
double scale;
// set of requrested locations to be evaluated
std::vector<cv::Point> locations;
// vector that will contain confidence values for each location
std::vector<double> confidences;
};
struct CV_EXPORTS_W HOGDescriptor
{
public:
enum { L2Hys = 0
};
enum { DEFAULT_NLEVELS = 64
};
CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true),
nlevels(HOGDescriptor::DEFAULT_NLEVELS)
{}
CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride,
Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1,
int _histogramNormType=HOGDescriptor::L2Hys,
double _L2HysThreshold=0.2, bool _gammaCorrection=false,
int _nlevels=HOGDescriptor::DEFAULT_NLEVELS)
: winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize),
nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma),
histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold),
gammaCorrection(_gammaCorrection), nlevels(_nlevels)
{}
CV_WRAP HOGDescriptor(const String& filename)
{
load(filename);
}
HOGDescriptor(const HOGDescriptor& d)
{
d.copyTo(*this);
}
virtual ~HOGDescriptor() {}
CV_WRAP size_t getDescriptorSize() const;
CV_WRAP bool checkDetectorSize() const;
CV_WRAP double getWinSigma() const;
CV_WRAP virtual void setSVMDetector(InputArray _svmdetector);
virtual bool read(FileNode& fn);
virtual void write(FileStorage& fs, const String& objname) const;
CV_WRAP virtual bool load(const String& filename, const String& objname = String());
CV_WRAP virtual void save(const String& filename, const String& objname = String()) const;
virtual void copyTo(HOGDescriptor& c) const;
CV_WRAP virtual void compute(const Mat& img,
CV_OUT std::vector<float>& descriptors,
Size winStride = Size(), Size padding = Size(),
const std::vector<Point>& locations = std::vector<Point>()) const;
//with found weights output
CV_WRAP virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations,
CV_OUT std::vector<double>& weights,
double hitThreshold = 0, Size winStride = Size(),
Size padding = Size(),
const std::vector<Point>& searchLocations = std::vector<Point>()) const;
//without found weights output
virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations,
double hitThreshold = 0, Size winStride = Size(),
Size padding = Size(),
const std::vector<Point>& searchLocations=std::vector<Point>()) const;
//with result weights output
CV_WRAP virtual void detectMultiScale(const Mat& img, CV_OUT std::vector<Rect>& foundLocations,
CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0,
Size winStride = Size(), Size padding = Size(), double scale = 1.05,
double finalThreshold = 2.0,bool useMeanshiftGrouping = false) const;
//without found weights output
virtual void detectMultiScale(const Mat& img, CV_OUT std::vector<Rect>& foundLocations,
double hitThreshold = 0, Size winStride = Size(),
Size padding = Size(), double scale = 1.05,
double finalThreshold = 2.0, bool useMeanshiftGrouping = false) const;
CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs,
Size paddingTL = Size(), Size paddingBR = Size()) const;
CV_WRAP static std::vector<float> getDefaultPeopleDetector();
CV_WRAP static std::vector<float> getDaimlerPeopleDetector();
CV_PROP Size winSize;
CV_PROP Size blockSize;
CV_PROP Size blockStride;
CV_PROP Size cellSize;
CV_PROP int nbins;
CV_PROP int derivAperture;
CV_PROP double winSigma;
CV_PROP int histogramNormType;
CV_PROP double L2HysThreshold;
CV_PROP bool gammaCorrection;
CV_PROP std::vector<float> svmDetector;
CV_PROP int nlevels;
// evaluate specified ROI and return confidence value for each location
virtual void detectROI(const cv::Mat& img, const std::vector<cv::Point> &locations,
CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences,
double hitThreshold = 0, cv::Size winStride = Size(),
cv::Size padding = Size()) const;
// evaluate specified ROI and return confidence value for each location in multiple scales
virtual void detectMultiScaleROI(const cv::Mat& img,
CV_OUT std::vector<cv::Rect>& foundLocations,
std::vector<DetectionROI>& locations,
double hitThreshold = 0,
int groupThreshold = 0) const;
// read/parse Dalal's alt model file
void readALTModel(String modelfile);
};
CV_EXPORTS_W void findDataMatrix(InputArray image,
CV_OUT std::vector<String>& codes,
OutputArray corners = noArray(),
OutputArrayOfArrays dmtx = noArray());
CV_EXPORTS_W void drawDataMatrixCodes(InputOutputArray image,
const std::vector<String>& codes,
InputArray corners);
}
#include "opencv2/objdetect/linemod.hpp"
#endif