mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
783 lines
26 KiB
783 lines
26 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
static |
|
void dilateFrame(Mat& image, Mat& depth) |
|
{ |
|
CV_Assert(!image.empty()); |
|
CV_Assert(image.type() == CV_8UC1); |
|
|
|
CV_Assert(!depth.empty()); |
|
CV_Assert(depth.type() == CV_32FC1); |
|
CV_Assert(depth.size() == image.size()); |
|
|
|
Mat mask(image.size(), CV_8UC1, Scalar(255)); |
|
for(int y = 0; y < depth.rows; y++) |
|
for(int x = 0; x < depth.cols; x++) |
|
if(cvIsNaN(depth.at<float>(y,x)) || depth.at<float>(y,x) > 10 || depth.at<float>(y,x) <= FLT_EPSILON) |
|
mask.at<uchar>(y,x) = 0; |
|
|
|
image.setTo(255, ~mask); |
|
Mat minImage; |
|
erode(image, minImage, Mat()); |
|
|
|
image.setTo(0, ~mask); |
|
Mat maxImage; |
|
dilate(image, maxImage, Mat()); |
|
|
|
depth.setTo(FLT_MAX, ~mask); |
|
Mat minDepth; |
|
erode(depth, minDepth, Mat()); |
|
|
|
depth.setTo(0, ~mask); |
|
Mat maxDepth; |
|
dilate(depth, maxDepth, Mat()); |
|
|
|
Mat dilatedMask; |
|
dilate(mask, dilatedMask, Mat(), Point(-1,-1), 1); |
|
for(int y = 0; y < depth.rows; y++) |
|
for(int x = 0; x < depth.cols; x++) |
|
if(!mask.at<uchar>(y,x) && dilatedMask.at<uchar>(y,x)) |
|
{ |
|
image.at<uchar>(y,x) = static_cast<uchar>(0.5f * (static_cast<float>(minImage.at<uchar>(y,x)) + |
|
static_cast<float>(maxImage.at<uchar>(y,x)))); |
|
depth.at<float>(y,x) = 0.5f * (minDepth.at<float>(y,x) + maxDepth.at<float>(y,x)); |
|
} |
|
} |
|
|
|
class OdometryTest |
|
{ |
|
public: |
|
OdometryTest(OdometryType _otype, |
|
OdometryAlgoType _algtype, |
|
double _maxError1, |
|
double _maxError5, |
|
double _idError = DBL_EPSILON) : |
|
otype(_otype), |
|
algtype(_algtype), |
|
maxError1(_maxError1), |
|
maxError5(_maxError5), |
|
idError(_idError) |
|
{ } |
|
|
|
void readData(Mat& image, Mat& depth) const; |
|
static Mat getCameraMatrix() |
|
{ |
|
float fx = 525.0f, // default |
|
fy = 525.0f, |
|
cx = 319.5f, |
|
cy = 239.5f; |
|
Matx33f K(fx, 0, cx, |
|
0, fy, cy, |
|
0, 0, 1); |
|
return Mat(K); |
|
} |
|
static void generateRandomTransformation(Mat& R, Mat& t); |
|
|
|
void run(); |
|
void checkUMats(); |
|
void prepareFrameCheck(); |
|
|
|
OdometryType otype; |
|
OdometryAlgoType algtype; |
|
double maxError1; |
|
double maxError5; |
|
double idError; |
|
}; |
|
|
|
|
|
void OdometryTest::readData(Mat& image, Mat& depth) const |
|
{ |
|
std::string dataPath = cvtest::TS::ptr()->get_data_path(); |
|
std::string imageFilename = dataPath + "/cv/rgbd/rgb.png"; |
|
std::string depthFilename = dataPath + "/cv/rgbd/depth.png"; |
|
|
|
image = imread(imageFilename, 0); |
|
depth = imread(depthFilename, -1); |
|
|
|
ASSERT_FALSE(image.empty()) << "Image " << imageFilename.c_str() << " can not be read" << std::endl; |
|
ASSERT_FALSE(depth.empty()) << "Depth " << depthFilename.c_str() << "can not be read" << std::endl; |
|
|
|
CV_DbgAssert(image.type() == CV_8UC1); |
|
CV_DbgAssert(depth.type() == CV_16UC1); |
|
{ |
|
Mat depth_flt; |
|
depth.convertTo(depth_flt, CV_32FC1, 1.f/5000.f); |
|
depth_flt.setTo(std::numeric_limits<float>::quiet_NaN(), depth_flt < FLT_EPSILON); |
|
depth = depth_flt; |
|
} |
|
} |
|
|
|
void OdometryTest::generateRandomTransformation(Mat& rvec, Mat& tvec) |
|
{ |
|
const float maxRotation = (float)(3.f / 180.f * CV_PI); //rad |
|
const float maxTranslation = 0.02f; //m |
|
|
|
RNG& rng = theRNG(); |
|
rvec.create(3, 1, CV_64FC1); |
|
tvec.create(3, 1, CV_64FC1); |
|
|
|
randu(rvec, Scalar(-1000), Scalar(1000)); |
|
normalize(rvec, rvec, rng.uniform(0.007f, maxRotation)); |
|
|
|
randu(tvec, Scalar(-1000), Scalar(1000)); |
|
normalize(tvec, tvec, rng.uniform(0.008f, maxTranslation)); |
|
} |
|
|
|
void OdometryTest::checkUMats() |
|
{ |
|
Mat K = getCameraMatrix(); |
|
|
|
Mat image, depth; |
|
readData(image, depth); |
|
|
|
UMat uimage, udepth; |
|
image.copyTo(uimage); |
|
depth.copyTo(udepth); |
|
|
|
OdometrySettings ods; |
|
ods.setCameraMatrix(K); |
|
Odometry odometry = Odometry(otype, ods, algtype); |
|
OdometryFrame odf(udepth, uimage); |
|
|
|
Mat calcRt; |
|
|
|
uimage.release(); |
|
udepth.release(); |
|
|
|
odometry.prepareFrame(odf); |
|
bool isComputed = odometry.compute(odf, odf, calcRt); |
|
ASSERT_TRUE(isComputed); |
|
double diff = cv::norm(calcRt, Mat::eye(4, 4, CV_64FC1)); |
|
ASSERT_LE(diff, idError) << "Incorrect transformation between the same frame (not the identity matrix)" << std::endl; |
|
} |
|
|
|
void OdometryTest::run() |
|
{ |
|
Mat K = getCameraMatrix(); |
|
|
|
Mat image, depth; |
|
readData(image, depth); |
|
OdometrySettings ods; |
|
ods.setCameraMatrix(K); |
|
Odometry odometry = Odometry(otype, ods, algtype); |
|
OdometryFrame odf(depth, image); |
|
Mat calcRt; |
|
|
|
// 1. Try to find Rt between the same frame (try masks also). |
|
Mat mask(image.size(), CV_8UC1, Scalar(255)); |
|
|
|
odometry.prepareFrame(odf); |
|
bool isComputed = odometry.compute(odf, odf, calcRt); |
|
|
|
ASSERT_TRUE(isComputed) << "Can not find Rt between the same frame" << std::endl; |
|
double ndiff = cv::norm(calcRt, Mat::eye(4,4,CV_64FC1)); |
|
ASSERT_LE(ndiff, idError) << "Incorrect transformation between the same frame (not the identity matrix)" << std::endl; |
|
|
|
// 2. Generate random rigid body motion in some ranges several times (iterCount). |
|
// On each iteration an input frame is warped using generated transformation. |
|
// Odometry is run on the following pair: the original frame and the warped one. |
|
// Comparing a computed transformation with an applied one we compute 2 errors: |
|
// better_1time_count - count of poses which error is less than ground truth pose, |
|
// better_5times_count - count of poses which error is 5 times less than ground truth pose. |
|
int iterCount = 100; |
|
int better_1time_count = 0; |
|
int better_5times_count = 0; |
|
for (int iter = 0; iter < iterCount; iter++) |
|
{ |
|
Mat rvec, tvec; |
|
generateRandomTransformation(rvec, tvec); |
|
Affine3d rt(rvec, tvec); |
|
|
|
Mat warpedImage, warpedDepth; |
|
|
|
warpFrame(depth, image, noArray(), rt.matrix, K, warpedDepth, warpedImage); |
|
dilateFrame(warpedImage, warpedDepth); // due to inaccuracy after warping |
|
|
|
OdometryFrame odfSrc(depth, image); |
|
OdometryFrame odfDst(warpedDepth, warpedImage); |
|
|
|
odometry.prepareFrames(odfSrc, odfDst); |
|
isComputed = odometry.compute(odfSrc, odfDst, calcRt); |
|
|
|
if (!isComputed) |
|
{ |
|
CV_LOG_INFO(NULL, "Iter " << iter << "; Odometry compute returned false"); |
|
continue; |
|
} |
|
Mat calcR = calcRt(Rect(0, 0, 3, 3)), calcRvec; |
|
cv::Rodrigues(calcR, calcRvec); |
|
calcRvec = calcRvec.reshape(rvec.channels(), rvec.rows); |
|
Mat calcTvec = calcRt(Rect(3,0,1,3)); |
|
|
|
if (cvtest::debugLevel >= 10) |
|
{ |
|
imshow("image", image); |
|
imshow("warpedImage", warpedImage); |
|
Mat resultImage, resultDepth; |
|
|
|
warpFrame(depth, image, noArray(), calcRt, K, resultDepth, resultImage); |
|
imshow("resultImage", resultImage); |
|
waitKey(100); |
|
} |
|
|
|
// compare rotation |
|
double possibleError = algtype == OdometryAlgoType::COMMON ? 0.015f : 0.01f; |
|
|
|
Affine3f src = Affine3f(Vec3f(rvec), Vec3f(tvec)); |
|
Affine3f res = Affine3f(Vec3f(calcRvec), Vec3f(calcTvec)); |
|
Affine3f src_inv = src.inv(); |
|
Affine3f diff = res * src_inv; |
|
double rdiffnorm = cv::norm(diff.rvec()); |
|
double tdiffnorm = cv::norm(diff.translation()); |
|
|
|
if (rdiffnorm < possibleError && tdiffnorm < possibleError) |
|
better_1time_count++; |
|
if (5. * rdiffnorm < possibleError && 5 * tdiffnorm < possibleError) |
|
better_5times_count++; |
|
|
|
CV_LOG_INFO(NULL, "Iter " << iter); |
|
CV_LOG_INFO(NULL, "rdiff: " << Vec3f(diff.rvec()) << "; rdiffnorm: " << rdiffnorm); |
|
CV_LOG_INFO(NULL, "tdiff: " << Vec3f(diff.translation()) << "; tdiffnorm: " << tdiffnorm); |
|
|
|
CV_LOG_INFO(NULL, "better_1time_count " << better_1time_count << "; better_5time_count " << better_5times_count); |
|
} |
|
|
|
if(static_cast<double>(better_1time_count) < maxError1 * static_cast<double>(iterCount)) |
|
{ |
|
FAIL() << "Incorrect count of accurate poses [1st case]: " |
|
<< static_cast<double>(better_1time_count) << " / " |
|
<< maxError1 * static_cast<double>(iterCount) << std::endl; |
|
} |
|
|
|
if(static_cast<double>(better_5times_count) < maxError5 * static_cast<double>(iterCount)) |
|
{ |
|
FAIL() << "Incorrect count of accurate poses [2nd case]: " |
|
<< static_cast<double>(better_5times_count) << " / " |
|
<< maxError5 * static_cast<double>(iterCount) << std::endl; |
|
} |
|
} |
|
|
|
void OdometryTest::prepareFrameCheck() |
|
{ |
|
Mat K = getCameraMatrix(); |
|
|
|
Mat gtImage, gtDepth; |
|
readData(gtImage, gtDepth); |
|
OdometrySettings ods; |
|
ods.setCameraMatrix(K); |
|
Odometry odometry = Odometry(otype, ods, algtype); |
|
OdometryFrame odf(gtDepth, gtImage); |
|
|
|
odometry.prepareFrame(odf); |
|
|
|
std::vector<int> iters; |
|
ods.getIterCounts(iters); |
|
size_t nlevels = iters.size(); |
|
|
|
Mat points, mask, depth, gray, rgb, scaled; |
|
|
|
odf.getMask(mask); |
|
int masknz = countNonZero(mask); |
|
ASSERT_GT(masknz, 0); |
|
|
|
odf.getDepth(depth); |
|
Mat patchedDepth = depth.clone(); |
|
patchNaNs(patchedDepth, 0); |
|
int depthnz = countNonZero(patchedDepth); |
|
double depthNorm = cv::norm(depth, gtDepth, NORM_INF, mask); |
|
ASSERT_LE(depthNorm, 0.0); |
|
|
|
Mat gtGray; |
|
if (otype == OdometryType::RGB || otype == OdometryType::RGB_DEPTH) |
|
{ |
|
odf.getGrayImage(gray); |
|
odf.getImage(rgb); |
|
double rgbNorm = cv::norm(rgb, gtImage); |
|
ASSERT_LE(rgbNorm, 0.0); |
|
|
|
if (gtImage.channels() == 3) |
|
cvtColor(gtImage, gtGray, COLOR_BGR2GRAY); |
|
else |
|
gtGray = gtImage; |
|
gtGray.convertTo(gtGray, CV_8U); |
|
double grayNorm = cv::norm(gray, gtGray); |
|
ASSERT_LE(grayNorm, 0.0); |
|
} |
|
|
|
odf.getProcessedDepth(scaled); |
|
int scalednz = countNonZero(scaled); |
|
EXPECT_EQ(scalednz, depthnz); |
|
|
|
std::vector<Mat> gtPyrDepth, gtPyrMask; |
|
//TODO: this depth calculation would become incorrect when we implement bilateral filtering, fixit |
|
buildPyramid(gtDepth, gtPyrDepth, (int)nlevels - 1); |
|
for (const auto& gd : gtPyrDepth) |
|
{ |
|
Mat pm = (gd > ods.getMinDepth()) & (gd < ods.getMaxDepth()); |
|
gtPyrMask.push_back(pm); |
|
} |
|
|
|
size_t npyr = odf.getPyramidLevels(); |
|
ASSERT_EQ(npyr, nlevels); |
|
Matx33f levelK = K; |
|
for (size_t i = 0; i < nlevels; i++) |
|
{ |
|
Mat depthi, cloudi, maski; |
|
|
|
odf.getPyramidAt(maski, OdometryFramePyramidType::PYR_MASK, i); |
|
ASSERT_FALSE(maski.empty()); |
|
double mnorm = cv::norm(maski, gtPyrMask[i]); |
|
EXPECT_LE(mnorm, 16 * 255.0) << "Mask diff is too big at pyr level " << i; |
|
|
|
odf.getPyramidAt(depthi, OdometryFramePyramidType::PYR_DEPTH, i); |
|
ASSERT_FALSE(depthi.empty()); |
|
double dnorm = cv::norm(depthi, gtPyrDepth[i], NORM_INF, maski); |
|
EXPECT_LE(dnorm, 8.e-7) << "Depth diff norm is too big at pyr level " << i; |
|
|
|
odf.getPyramidAt(cloudi, OdometryFramePyramidType::PYR_CLOUD, i); |
|
ASSERT_FALSE(cloudi.empty()); |
|
Mat gtCloud; |
|
depthTo3d(depthi, levelK, gtCloud); |
|
double cnorm = cv::norm(cloudi, gtCloud, NORM_INF, maski); |
|
EXPECT_LE(cnorm, 0.0) << "Cloud diff norm is too big at pyr level " << i; |
|
// downscale camera matrix for next pyramid level |
|
levelK = 0.5f * levelK; |
|
levelK(2, 2) = 1.f; |
|
} |
|
|
|
if (otype == OdometryType::RGB || otype == OdometryType::RGB_DEPTH) |
|
{ |
|
std::vector<Mat> gtPyrImage; |
|
buildPyramid(gtGray, gtPyrImage, (int)nlevels - 1); |
|
|
|
for (size_t i = 0; i < nlevels; i++) |
|
{ |
|
Mat rgbi, texi, dixi, diyi, maski; |
|
odf.getPyramidAt(maski, OdometryFramePyramidType::PYR_MASK, i); |
|
odf.getPyramidAt(rgbi, OdometryFramePyramidType::PYR_IMAGE, i); |
|
ASSERT_FALSE(rgbi.empty()); |
|
double rnorm = cv::norm(rgbi, gtPyrImage[i], NORM_INF); |
|
EXPECT_LE(rnorm, 1.0) << "RGB diff is too big at pyr level " << i; |
|
odf.getPyramidAt(texi, OdometryFramePyramidType::PYR_TEXMASK, i); |
|
ASSERT_FALSE(texi.empty()); |
|
int tnz = countNonZero(texi); |
|
EXPECT_GE(tnz, 1000) << "Texture mask has too few valid pixels at pyr level " << i; |
|
Mat gtDixi, gtDiyi; |
|
Sobel(rgbi, gtDixi, CV_16S, 1, 0, ods.getSobelSize()); |
|
odf.getPyramidAt(dixi, OdometryFramePyramidType::PYR_DIX, i); |
|
ASSERT_FALSE(dixi.empty()); |
|
double dixnorm = cv::norm(dixi, gtDixi, NORM_INF, maski); |
|
EXPECT_LE(dixnorm, 0) << "dI/dx diff is too big at pyr level " << i; |
|
Sobel(rgbi, gtDiyi, CV_16S, 0, 1, ods.getSobelSize()); |
|
odf.getPyramidAt(diyi, OdometryFramePyramidType::PYR_DIY, i); |
|
ASSERT_FALSE(diyi.empty()); |
|
double diynorm = cv::norm(diyi, gtDiyi, NORM_INF, maski); |
|
EXPECT_LE(diynorm, 0) << "dI/dy diff is too big at pyr level " << i; |
|
} |
|
} |
|
|
|
if (otype == OdometryType::DEPTH || otype == OdometryType::RGB_DEPTH) |
|
{ |
|
Ptr<RgbdNormals> normalComputer = odometry.getNormalsComputer(); |
|
ASSERT_FALSE(normalComputer.empty()); |
|
Mat normals; |
|
odf.getNormals(normals); |
|
std::vector<Mat> gtPyrNormals; |
|
buildPyramid(normals, gtPyrNormals, (int)nlevels - 1); |
|
for (size_t i = 0; i < nlevels; i++) |
|
{ |
|
Mat gtNormal = gtPyrNormals[i]; |
|
CV_Assert(gtNormal.type() == CV_32FC4); |
|
for (int y = 0; y < gtNormal.rows; y++) |
|
{ |
|
Vec4f *normals_row = gtNormal.ptr<Vec4f>(y); |
|
for (int x = 0; x < gtNormal.cols; x++) |
|
{ |
|
Vec4f n4 = normals_row[x]; |
|
Point3f n(n4[0], n4[1], n4[2]); |
|
double nrm = cv::norm(n); |
|
n *= 1.f / nrm; |
|
normals_row[x] = Vec4f(n.x, n.y, n.z, 0); |
|
} |
|
} |
|
|
|
Mat normmaski; |
|
odf.getPyramidAt(normmaski, OdometryFramePyramidType::PYR_NORMMASK, i); |
|
ASSERT_FALSE(normmaski.empty()); |
|
int nnm = countNonZero(normmaski); |
|
EXPECT_GE(nnm, 1000) << "Normals mask has too few valid pixels at pyr level " << i; |
|
|
|
Mat ptsi; |
|
odf.getPyramidAt(ptsi, OdometryFramePyramidType::PYR_CLOUD, i); |
|
|
|
Mat normi; |
|
odf.getPyramidAt(normi, OdometryFramePyramidType::PYR_NORM, i); |
|
ASSERT_FALSE(normi.empty()); |
|
double nnorm = cv::norm(normi, gtNormal, NORM_INF, normmaski); |
|
EXPECT_LE(nnorm, 3.3e-7) << "Normals diff is too big at pyr level " << i; |
|
|
|
if (i == 0) |
|
{ |
|
double pnnorm = cv::norm(normals, normi, NORM_INF, normmaski); |
|
EXPECT_GE(pnnorm, 0); |
|
} |
|
} |
|
} |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Tests registrations * |
|
\****************************************************************************************/ |
|
|
|
TEST(RGBD_Odometry_Rgb, algorithmic) |
|
{ |
|
OdometryTest test(OdometryType::RGB, OdometryAlgoType::COMMON, 0.99, 0.99); |
|
test.run(); |
|
} |
|
|
|
TEST(RGBD_Odometry_ICP, algorithmic) |
|
{ |
|
OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99); |
|
test.run(); |
|
} |
|
|
|
TEST(RGBD_Odometry_RgbdICP, algorithmic) |
|
{ |
|
OdometryTest test(OdometryType::RGB_DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99); |
|
test.run(); |
|
} |
|
|
|
TEST(RGBD_Odometry_FastICP, algorithmic) |
|
{ |
|
OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::FAST, 0.99, 0.87, 1.84e-5); |
|
test.run(); |
|
} |
|
|
|
|
|
TEST(RGBD_Odometry_Rgb, UMats) |
|
{ |
|
OdometryTest test(OdometryType::RGB, OdometryAlgoType::COMMON, 0.99, 0.99); |
|
test.checkUMats(); |
|
} |
|
|
|
TEST(RGBD_Odometry_ICP, UMats) |
|
{ |
|
OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99); |
|
test.checkUMats(); |
|
} |
|
|
|
TEST(RGBD_Odometry_RgbdICP, UMats) |
|
{ |
|
OdometryTest test(OdometryType::RGB_DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99); |
|
test.checkUMats(); |
|
} |
|
|
|
TEST(RGBD_Odometry_FastICP, UMats) |
|
{ |
|
// OpenCL version has slightly less accuracy than CPU version |
|
OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::FAST, 0.99, 0.99, 1.84e-5); |
|
test.checkUMats(); |
|
} |
|
|
|
|
|
TEST(RGBD_Odometry_Rgb, prepareFrame) |
|
{ |
|
OdometryTest test(OdometryType::RGB, OdometryAlgoType::COMMON, 0.99, 0.99); |
|
test.prepareFrameCheck(); |
|
} |
|
|
|
TEST(RGBD_Odometry_ICP, prepareFrame) |
|
{ |
|
OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99); |
|
test.prepareFrameCheck(); |
|
} |
|
|
|
TEST(RGBD_Odometry_RgbdICP, prepareFrame) |
|
{ |
|
OdometryTest test(OdometryType::RGB_DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99); |
|
test.prepareFrameCheck(); |
|
} |
|
|
|
TEST(RGBD_Odometry_FastICP, prepareFrame) |
|
{ |
|
OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::FAST, 0.99, 0.99, FLT_EPSILON); |
|
test.prepareFrameCheck(); |
|
} |
|
|
|
|
|
struct WarpFrameTest |
|
{ |
|
WarpFrameTest() : |
|
srcDepth(), srcRgb(), srcMask(), |
|
dstDepth(), dstRgb(), dstMask(), |
|
warpedDepth(), warpedRgb(), warpedMask() |
|
{} |
|
|
|
void run(bool needRgb, bool scaleDown, bool checkMask, bool identityTransform, int depthType, int imageType); |
|
|
|
Mat srcDepth, srcRgb, srcMask; |
|
Mat dstDepth, dstRgb, dstMask; |
|
Mat warpedDepth, warpedRgb, warpedMask; |
|
}; |
|
|
|
void WarpFrameTest::run(bool needRgb, bool scaleDown, bool checkMask, bool identityTransform, int depthType, int rgbType) |
|
{ |
|
std::string dataPath = cvtest::TS::ptr()->get_data_path(); |
|
std::string srcDepthFilename = dataPath + "/cv/rgbd/depth.png"; |
|
std::string srcRgbFilename = dataPath + "/cv/rgbd/rgb.png"; |
|
// The depth was generated using the script at testdata/cv/rgbd/warped_depth_generator/warp_test.py |
|
std::string warpedDepthFilename = dataPath + "/cv/rgbd/warpedDepth.png"; |
|
std::string warpedRgbFilename = dataPath + "/cv/rgbd/warpedRgb.png"; |
|
|
|
srcDepth = imread(srcDepthFilename, IMREAD_UNCHANGED); |
|
ASSERT_FALSE(srcDepth.empty()) << "Depth " << srcDepthFilename.c_str() << "can not be read" << std::endl; |
|
|
|
if (identityTransform) |
|
{ |
|
warpedDepth = srcDepth; |
|
} |
|
else |
|
{ |
|
warpedDepth = imread(warpedDepthFilename, IMREAD_UNCHANGED); |
|
ASSERT_FALSE(warpedDepth.empty()) << "Depth " << warpedDepthFilename.c_str() << "can not be read" << std::endl; |
|
} |
|
|
|
ASSERT_TRUE(srcDepth.type() == CV_16UC1); |
|
ASSERT_TRUE(warpedDepth.type() == CV_16UC1); |
|
|
|
Mat epsSrc = srcDepth > 0, epsWarped = warpedDepth > 0; |
|
|
|
const double depthFactor = 5000.0; |
|
// scale float types only |
|
double depthScaleCoeff = scaleDown ? ( depthType == CV_16U ? 1. : 1./depthFactor ) : 1.; |
|
double transScaleCoeff = scaleDown ? ( depthType == CV_16U ? depthFactor : 1. ) : depthFactor; |
|
|
|
Mat srcDepthCvt, warpedDepthCvt; |
|
srcDepth.convertTo(srcDepthCvt, depthType, depthScaleCoeff); |
|
srcDepth = srcDepthCvt; |
|
warpedDepth.convertTo(warpedDepthCvt, depthType, depthScaleCoeff); |
|
warpedDepth = warpedDepthCvt; |
|
|
|
Scalar badVal; |
|
switch (depthType) |
|
{ |
|
case CV_16U: |
|
badVal = 0; |
|
break; |
|
case CV_32F: |
|
badVal = std::numeric_limits<float>::quiet_NaN(); |
|
break; |
|
case CV_64F: |
|
badVal = std::numeric_limits<double>::quiet_NaN(); |
|
break; |
|
default: |
|
CV_Error(Error::StsBadArg, "Unsupported depth data type"); |
|
} |
|
|
|
srcDepth.setTo(badVal, ~epsSrc); |
|
warpedDepth.setTo(badVal, ~epsWarped); |
|
|
|
if (checkMask) |
|
{ |
|
srcMask = epsSrc; warpedMask = epsWarped; |
|
} |
|
else |
|
{ |
|
srcMask = Mat(); warpedMask = Mat(); |
|
} |
|
|
|
if (needRgb) |
|
{ |
|
srcRgb = imread(srcRgbFilename, rgbType == CV_8UC1 ? IMREAD_GRAYSCALE : IMREAD_COLOR); |
|
ASSERT_FALSE(srcRgb.empty()) << "Image " << srcRgbFilename.c_str() << "can not be read" << std::endl; |
|
|
|
if (identityTransform) |
|
{ |
|
srcRgb.copyTo(warpedRgb, epsSrc); |
|
} |
|
else |
|
{ |
|
warpedRgb = imread(warpedRgbFilename, rgbType == CV_8UC1 ? IMREAD_GRAYSCALE : IMREAD_COLOR); |
|
ASSERT_FALSE (warpedRgb.empty()) << "Image " << warpedRgbFilename.c_str() << "can not be read" << std::endl; |
|
} |
|
|
|
if (rgbType == CV_8UC4) |
|
{ |
|
Mat newSrcRgb, newWarpedRgb; |
|
cvtColor(srcRgb, newSrcRgb, COLOR_RGB2RGBA); |
|
srcRgb = newSrcRgb; |
|
// let's keep alpha channel |
|
std::vector<Mat> warpedRgbChannels; |
|
split(warpedRgb, warpedRgbChannels); |
|
warpedRgbChannels.push_back(epsWarped); |
|
merge(warpedRgbChannels, newWarpedRgb); |
|
warpedRgb = newWarpedRgb; |
|
} |
|
|
|
ASSERT_TRUE(srcRgb.type() == rgbType); |
|
ASSERT_TRUE(warpedRgb.type() == rgbType); |
|
} |
|
else |
|
{ |
|
srcRgb = Mat(); warpedRgb = Mat(); |
|
} |
|
|
|
// test data used to generate warped depth and rgb |
|
// the script used to generate is in opencv_extra repo |
|
// at testdata/cv/rgbd/warped_depth_generator/warp_test.py |
|
double fx = 525.0, fy = 525.0, |
|
cx = 319.5, cy = 239.5; |
|
Matx33d K(fx, 0, cx, |
|
0, fy, cy, |
|
0, 0, 1); |
|
cv::Affine3d rt; |
|
cv::Vec3d tr(-0.04, 0.05, 0.6); |
|
rt = identityTransform ? cv::Affine3d() : cv::Affine3d(cv::Vec3d(0.1, 0.2, 0.3), tr * transScaleCoeff); |
|
|
|
warpFrame(srcDepth, srcRgb, srcMask, rt.matrix, K, dstDepth, dstRgb, dstMask); |
|
} |
|
|
|
typedef std::pair<int, int> WarpFrameInputTypes; |
|
typedef testing::TestWithParam<WarpFrameInputTypes> WarpFrameInputs; |
|
|
|
TEST_P(WarpFrameInputs, checkTypes) |
|
{ |
|
const double shortl2diff = 233.983; |
|
const double shortlidiff = 1; |
|
const double floatl2diff = 0.038209; |
|
const double floatlidiff = 0.00020004; |
|
|
|
int depthType = GetParam().first; |
|
int rgbType = GetParam().second; |
|
|
|
WarpFrameTest w; |
|
// scale down does not happen on CV_16U |
|
// to avoid integer overflow |
|
w.run(/* needRgb */ true, /* scaleDown*/ true, |
|
/* checkMask */ true, /* identityTransform */ false, depthType, rgbType); |
|
|
|
double rgbDiff = cv::norm(w.dstRgb, w.warpedRgb, NORM_L2); |
|
double maskDiff = cv::norm(w.dstMask, w.warpedMask, NORM_L2); |
|
|
|
EXPECT_EQ(0, maskDiff); |
|
EXPECT_EQ(0, rgbDiff); |
|
|
|
double l2diff = cv::norm(w.dstDepth, w.warpedDepth, NORM_L2, w.warpedMask); |
|
double lidiff = cv::norm(w.dstDepth, w.warpedDepth, NORM_INF, w.warpedMask); |
|
|
|
double l2threshold = depthType == CV_16U ? shortl2diff : floatl2diff; |
|
double lithreshold = depthType == CV_16U ? shortlidiff : floatlidiff; |
|
|
|
EXPECT_LE(l2diff, l2threshold); |
|
EXPECT_LE(lidiff, lithreshold); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(RGBD_Odometry, WarpFrameInputs, ::testing::Values( |
|
WarpFrameInputTypes { CV_16U, CV_8UC3 }, |
|
WarpFrameInputTypes { CV_32F, CV_8UC3 }, |
|
WarpFrameInputTypes { CV_64F, CV_8UC3 }, |
|
WarpFrameInputTypes { CV_32F, CV_8UC1 }, |
|
WarpFrameInputTypes { CV_32F, CV_8UC4 })); |
|
|
|
|
|
TEST(RGBD_Odometry_WarpFrame, identity) |
|
{ |
|
WarpFrameTest w; |
|
w.run(/* needRgb */ true, /* scaleDown*/ true, /* checkMask */ true, /* identityTransform */ true, CV_32F, CV_8UC3); |
|
|
|
double rgbDiff = cv::norm(w.dstRgb, w.warpedRgb, NORM_L2); |
|
double maskDiff = cv::norm(w.dstMask, w.warpedMask, NORM_L2); |
|
|
|
ASSERT_EQ(0, rgbDiff); |
|
ASSERT_EQ(0, maskDiff); |
|
|
|
double depthDiff = cv::norm(w.dstDepth, w.warpedDepth, NORM_L2, w.dstMask); |
|
|
|
ASSERT_LE(depthDiff, DBL_EPSILON); |
|
} |
|
|
|
TEST(RGBD_Odometry_WarpFrame, noRgb) |
|
{ |
|
WarpFrameTest w; |
|
w.run(/* needRgb */ false, /* scaleDown*/ true, /* checkMask */ true, /* identityTransform */ false, CV_32F, CV_8UC3); |
|
|
|
double maskDiff = cv::norm(w.dstMask, w.warpedMask, NORM_L2); |
|
ASSERT_EQ(0, maskDiff); |
|
|
|
double l2diff = cv::norm(w.dstDepth, w.warpedDepth, NORM_L2, w.warpedMask); |
|
double lidiff = cv::norm(w.dstDepth, w.warpedDepth, NORM_INF, w.warpedMask); |
|
|
|
ASSERT_LE(l2diff, 0.038209); |
|
ASSERT_LE(lidiff, 0.00020004); |
|
} |
|
|
|
TEST(RGBD_Odometry_WarpFrame, nansAreMasked) |
|
{ |
|
WarpFrameTest w; |
|
w.run(/* needRgb */ true, /* scaleDown*/ true, /* checkMask */ false, /* identityTransform */ false, CV_32F, CV_8UC3); |
|
|
|
double rgbDiff = cv::norm(w.dstRgb, w.warpedRgb, NORM_L2); |
|
|
|
ASSERT_EQ(0, rgbDiff); |
|
|
|
Mat goodVals = (w.warpedDepth == w.warpedDepth); |
|
|
|
double l2diff = cv::norm(w.dstDepth, w.warpedDepth, NORM_L2, goodVals); |
|
double lidiff = cv::norm(w.dstDepth, w.warpedDepth, NORM_INF, goodVals); |
|
|
|
ASSERT_LE(l2diff, 0.038209); |
|
ASSERT_LE(lidiff, 0.00020004); |
|
} |
|
|
|
TEST(RGBD_Odometry_WarpFrame, bigScale) |
|
{ |
|
WarpFrameTest w; |
|
w.run(/* needRgb */ true, /* scaleDown*/ false, /* checkMask */ true, /* identityTransform */ false, CV_32F, CV_8UC3); |
|
|
|
double rgbDiff = cv::norm(w.dstRgb, w.warpedRgb, NORM_L2); |
|
double maskDiff = cv::norm(w.dstMask, w.warpedMask, NORM_L2); |
|
|
|
ASSERT_EQ(0, maskDiff); |
|
ASSERT_EQ(0, rgbDiff); |
|
|
|
double l2diff = cv::norm(w.dstDepth, w.warpedDepth, NORM_L2, w.warpedMask); |
|
double lidiff = cv::norm(w.dstDepth, w.warpedDepth, NORM_INF, w.warpedMask); |
|
|
|
ASSERT_LE(l2diff, 191.026565); |
|
ASSERT_LE(lidiff, 0.99951172); |
|
} |
|
|
|
TEST(RGBD_DepthTo3D, mask) |
|
{ |
|
std::string dataPath = cvtest::TS::ptr()->get_data_path(); |
|
std::string srcDepthFilename = dataPath + "/cv/rgbd/depth.png"; |
|
|
|
Mat srcDepth = imread(srcDepthFilename, IMREAD_UNCHANGED); |
|
ASSERT_FALSE(srcDepth.empty()) << "Depth " << srcDepthFilename.c_str() << "can not be read" << std::endl; |
|
ASSERT_TRUE(srcDepth.type() == CV_16UC1); |
|
|
|
Mat srcMask = srcDepth > 0; |
|
|
|
// test data used to generate warped depth and rgb |
|
// the script used to generate is in opencv_extra repo |
|
// at testdata/cv/rgbd/warped_depth_generator/warp_test.py |
|
double fx = 525.0, fy = 525.0, |
|
cx = 319.5, cy = 239.5; |
|
Matx33d intr(fx, 0, cx, |
|
0, fy, cy, |
|
0, 0, 1); |
|
|
|
Mat srcCloud; |
|
depthTo3d(srcDepth, intr, srcCloud, srcMask); |
|
size_t npts = countNonZero(srcMask); |
|
|
|
ASSERT_EQ(npts, srcCloud.total()); |
|
} |
|
|
|
}} // namespace
|
|
|